EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

Size: px
Start display at page:

Download "EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model"

Transcription

1 EE115C Winter 2017 Digital Electronic Circuits Lecture 2: MOS Transistor: IV Model

2 Levels of Modeling Analytical CAD analytical Switch-level sim Transistor-level sim complexity Different complexity, accuracy, speed of convergence EE115C Winter

3 MOS Transistor Modeling D S Our goal is to model delay and energy not current But have to start with current EE115C Winter

4 MOSFET, Notations D G S t ox x d L eff L d x d B Hand-analysis I-V formulas: L = L eff EE115C Winter

5 Important Concepts to Understand Threshold voltage (V T ) Velocity saturation Channel length modulation (channel pinch-off) EE115C Winter

6 Threshold Voltage, V T V SB = 0 V T0 is approx 0.2V for our process V T = V T0 + γ ( 2Φ F + V SB 2Φ F ) D G B V T S V SB NMOS: V SB > 0 (RBB) V SB < 0 (FBB) PMOS: V SB > 0 (FBB) V SB < 0 (RBB) EE115C Winter

7 Outline MOS Transistor Basic Operation Modes of Operation Deep sub-micron MOS EE115C Winter

8 The Drain Current in Linear Regime Combining velocity and charge: Integrating over the channel: Transconductance: Gain factor: Small V DS ignore quadratic term linear V DS dependence L = effective L = L d 2x d EE115C Winter

9 Velocity Saturation Carrier velocity saturates when critical field is reached v v sat 10 5 m/s με ε c ε EE115C Winter

10 Simple Model EE115C Winter

11 A More General Model Approximate velocity: A more general model: for ξ ξ c for ξ ξ c we use n = 1 And integrate current again: In deep submicron, there are four regions of operation: (1) cutoff, (2) resistive, (3) saturation and (4) velocity saturation EE115C Winter

12 Including Velocity Saturation in the I D Formula EE115C Winter

13 Calculating Velocity Saturation, V DSAT EE115C Winter

14 Vsat Occurs at LOWER V DS than Sat V DS = k V GT V DS = V GT I D Vsat k Sat k = V GT ε c L k = k(v GT ) V DS EE115C Winter

15 Vsat: Less Current for Same V GS I D Sat (Long-L) V GS = V DD Vsat (Short-L) V DSAT V GT V DS EE115C Winter

16 Channel Length Modulation (CLM) Channel pinch-off EE115C Winter

17 Modeling Channel Length Modulation (CLM) Many empirical models Goal: get a simple model that is convenient for hand analysis Here is a possible modeling approach: EE115C Winter

18 MOS in Saturation with CLM Another model: DV instead of L p EE115C Winter

19 CLM Holds in Vsat V DS > V DSAT S V DS D L eff L p V DSAT ΔV DS EE115C Winter

20 Saturation vs. Velocity Saturation V-Sat occurs for lower V DS than Sat EE115C Winter

21 Simulation: Long vs. Short Channel (90nm) I D VSat (V GS ) linear, I D Sat (V GS ) quadratic Stronger CLM in short-l than long-l I D Vsat < I D Sat only for large V GS 2.4µm/0.5µm 0.48µm/0.1µm EE115C Winter

22 Simplification: V DSAT = Constant Const V DSAT Simplifies hand calculations I D BUT V DS EE115C Winter

23 Regions of Operation I D Const V DSAT Lin VSat Simplification introduces Sat region for low V GS V GT < V DSAT, the device appears to be in Sat Sat V DS V GT = V DSAT EE115C Winter

24 I D (ma) Unified Model vs. SPICE Simulation V DS = V DSAT Lin VSat simulation model Transition lin/v-sat: largest modeling error Sat V GT = V DSAT V DS / V REF V DS = V GT EE115C Winter

25 MOS Regions of Operation Nano-scale MOS devices operate in velocity saturation Saturation still possible for low V GS values (up to V DSAT ) EE115C Winter

26 MOS I-V Model: Active Region V GT = V GS V T G S D I D Active region (V GT 0) Lin, Sat, V-Sat 2 V min W I D = k (1 + λ V DS ) L (V GT V min ) 2 V min = min(v DS, V GT, V DSAT ) B Lin Sat V-Sat Neglect CLM in linear region EE115C Winter

27 Model Parameters: Active Region V T0 γ V DSAT k λ : Threshold voltage : Body effect : Velocity saturation : Transconductance (k = µ C ox ) : Channel-length modulation (CLM) CLM term (1 + λv DS ) also included for linear region Empirical, no physical justification EE115C Winter

28 Typical Values for 90nm ε ox ε 0 = F/m (ε ox = 3.9) t ox = 2.3 nm C ox = ε ox / t ox = 15.2 ff/um 2 For W/L = 430nm/120nm C g = 0.65 ff Leff = 70nm ε c = 4V/um Vdsat = ε c L = 0.3V EE115C Winter

29 Unified Model: Observations CLM term (1 + lv DS ) also included for linear region Empirical, not grounded in physical considerations Five parameters: V T0, g, V DSAT, k, l Can determine from physics Or choose values that best match simulation/measured data (match the best in regions that matter the most) Use different model for L >> L min (in EE115C we assume L = L min unless otherwise specified) Let s see how do we extract these parameters from the I-V curves EE115C Winter

30 140 The Meaning 120 of Model Parameters: V T0 I D (ma) I D (ma) MOS in saturation V GS =0.5V V GS =0.4V V DS (V) B A BB 0.5BB 0.7BB 1BB EE115C Winter

31 The Meaning of Model Parameters: g EE115C Winter

32 The Meaning of Model Parameters: l EE115C Winter

33 The Meaning of Model Parameters: k EE115C Winter

34 Sub-threshold Current This is another topic of crucial importance in digital design (and not considered in EE115A models) We need to consider sub-threshold current, because digital designs have many millions of transistors and when these are inactive, we may get some surprise power consumption EE115C Winter

35 I D (A) Sub-threshold I D versus V GS is Exponential 6 5 x 10-4 Long Channel 4 3 quadratic 2 Sub-threshold Short Channel 1 exp quadratic linear V GS (V) EE115C Winter

36 Modeling the Sub-threshold Behavior G S D Parasitic BJT n + E B C ox C n + V BE I C = I 0 e Φ t C d V BE = V GS 1 + C d C ox n = 1 + C d C ox V GS I D = I 0 enφ t (1 e V DS Φ t ) Φ t = kt q EE115C Winter

37 Sub-threshold I D vs. V GS Physical model V GS I D = I 0 enφ t (1 e V DS Φ t ) I 0 = μ W L Φ t 2 e V T nφ t DIBL Empirical model I D = I 0 W 10 V GS V T +γ D V DS S W 0 S = nφ t ln(10) [mv/dec] EE115C Winter

38 The Sub-threshold Slope Parameter S = nφ t ln(10) [mv/dec] Change in V GS that gives 10x change in I DS n = 1 60 mv/dec (ideal) n = mv/dec (typical) S: increases with temperature (Φ t ) n: intrinsic to device topology / structure EE115C Winter

39 Drain Induced Barrier Lowering (DIBL) Effective V T Long-L Short-L decreasing L V DS Field lines from the drain affect charge in the channel Typically derived for small V DS, holds for large V DS Even if we neglect CLM, I DS will increase b/c of V T drop Device turned off by V GS (below V T ) may turn on by V DS EE115C Winter

40 MOS I-V Model: Subthreshold V GT = V GS V T G Subthreshold region (V GT 0) I D = I W V GS V T + γ D V DS 0 S W 0 10 S I D D Model parameters B I 0 S γ D : Nominal leakage current : Subthreshold slope : DIBL factor EE115C Winter

41 90nm Simulation: Sub-threshold I D vs. V GS I D ~10 V GS V T +γ D V DS S PMOS NMOS 10x 90mV V DS : 0 to 0.4V S = nφ t ln(10) 90mV/dec EE115C Winter

42 90nm Simulation: Sub-threshold I D vs. V DS I D ~10 V GS V T +γ D V DS S PMOS NMOS V GS : 0 to 0.3V 480nm/100nm 240nm/100nm EE115C Winter

43 MOS I-V Model: Summary V GT = V GS V T G Subthreshold region (V GT 0) I D = I W V GS V T + γ D V DS 0 S W 0 10 S B I D D Active region (V GT 0) Lin, Sat, V-Sat 2 V min W I D = k (1 + λ V DS ) L (V GT V min ) 2 V min = min(v DS, V GT, V DSAT ) Lin Sat V-Sat EE115C Winter

44 .MODEL Parameters MOS1 (Basic Parameters).MODEL Modname NMOS/PMOS <VT0=VT0 > EE115C Winter

45 In Reality: GPDK090 Model (gpdk090_mos.scs) section TT_s1v parameters + s1v_rs_ne = e+000 s1v_vsat_ne = e+005 s1v_pldd_surf = e s1v_uc1_ne = e-010 s1v_u0_ne = e-002 s1v_nch_ne = e s1v_rsc_ne = e-014 s1v_cgbo_ne = e-011 s1v_prt_ne = e s1v_rdc_ne = e-014 s1v_vth0_ne = e-001 s1v_k2_ne = e s1v_cgdo_ne = e-010 s1v_ckappa_ne = e+000 s1v_wint_ne = e s1v_k1_ne = e-001 s1v_cgsl_ne = e-010 s1v_nldd_surf = e s1v_js_ne = e-006 s1v_hdif_ne = e-007 s1v_rdsw_ne = e s1v_jsw_ne = e-010 s1v_tox_ne = e-009 s1v_cj_ne = e s1v_cjsw_ne = e-011 s1v_ldif_ne = e-008 s1v_xj_ne = e s1v_rd_ne = e+000 s1v_pb_ne = e-001 s1v_cf_ne = e s1v_lint_ne = e-008 s1v_cjswg_ne = e-011 s1v_rsh_ne = e s1v_u0_pe = e-002 s1v_nch_pe = e+017 s1v_rsc_pe = e s1v_cgbo_pe = e-011 s1v_rdc_pe = e-014 s1v_vth0_pe = e s1v_k2_pe = e+000 s1v_cgdo_pe = e-010 s1v_ckappa_pe = e s1v_wint_pe = e-009 s1v_k1_pe = e-001 s1v_cgsl_pe = e s1v_js_pe = e-006 s1v_hdif_pe = e-007 s1v_rdsw_pe = e s1v_jsw_pe = e-010 s1v_tox_pe = e-009 s1v_cj_pe = e s1v_cjsw_pe = e-011 s1v_ldif_pe = e-008 s1v_xj_pe = e s1v_rd_pe = e+000 s1v_pb_pe = e+000 s1v_cf_pe = e s1v_lint_pe = e-008 s1v_cjswg_pe = e-011 s1v_rsh_pe = e s1v_rs_pe = e+000 s1v_vsat_pe = e+005 include "gpdk090_mos.scs" section = s1v_mos endsection TT_s1v This model continues on the next slide EE115C Winter

46 GPDK090 Model (section s1v_mos) section s1v_mos model gpdk090_nmos1v bsim3v3 type = n + lmin = 0.0 lmax = 1.0 wmin = wmax = 1.0 tnom = 25.0 version = tox = s1v_tox_ne toxm = s1v_tox_ne xj = s1v_xj_ne + nch = s1v_nch_ne lln = lwn = wln = wwn = lint = s1v_lint_ne + ll = 0.00 lw = 0.00 lwl = wint = s1v_wint_ne wl = 0.00 ww = wwl = 0.00 mobmod = 1 binunit = 2 + xl = 0 xw = 0 dwg = dwb = 0.00 acm = 12 ldif = s1v_ldif_ne + hdif = s1v_hdif_ne rsh = s1v_rsh_ne rd = s1v_rd_ne + rs = s1v_rs_ne rsc = s1v_rsc_ne rdc = s1v_rdc_ne + vth0 = s1v_vth0_ne k1 = s1v_k1_ne k2 = s1v_k2_ne + k3 = dvt0 = dvt1 = dvt2 = E-02 dvt0w = 0.00 dvt1w = dvt2w = 0.00 nlx = E-07 w0 = E-09 + k3b = ngate = 4.0E20 vsat = s1v_vsat_ne + ua = E-10 ub = E-18 uc = E-10 + rdsw = s1v_rdsw_ne prwb = 0.00 prwg = wr = u0 = s1v_u0_ne a0 = keta = E-02 a1 = 0.00 a2 = ags = b0 = 0.00 b1 = 0.00 And many more parameters... (compare to our 5-parameter model) EE115C Winter

47 Spectre Netlist (NMOS, PMOS) section s1v_mac subckt s1v_ckt_nch (n11 n2 n33 n4) parameters l=0.1u w=10u multi=1 factor=1 nrd=s1v_hdif_ne/factor/w nrs=s1v_hdif_ne/factor/w + Tox_ratio = 3.0e-9 / (s1v_tox_ne*s1v_tox_ne*s1v_tox_ne) MAIN (n1 n2 n3 n4) gpdk090_nmos1v w=w l=l nrd=nrd nrs=nrs multi=multi GDF1 (n2 n1) bsource i = w*0.6*s1v_xj_ne* *tox_ratio*v(n2,n1)*v(n2,n3)*exp( e11*s1v_tox_ne* GDF2 (n2 n3) bsource i = w*0.6*s1v_xj_ne* *tox_ratio*v(n2,n3)*sqrt( (v(n2,n3) *log(4.0e20 20 / s1v_nldd_surf)) + 1.0e-4 )*exp( e11*s1v_tox_ne*( *sqrt( (v(n2,n3) *log(4.0e20.0e20 / s1v_nldd_surf)) *log(4.0e20 / s1v_nldd_surf))*(v(n2,n3) s1v_nldd_surf)) + 1.0e-4 ))) rdn (n1 n11) resistor r= 6.8 *nrd/multi rsn (n3 n33) resistor r= 6.8 *nrs/multi ends s1v_ckt_nch subckt s1v_ckt_pch (p11 p2 p33 p4) parameters l=0.1u w=10u multi=1 factor=1 nrd=s1v_hdif_pe/factor/w nrs=s1v_hdif_pe/factor/w + Tox_ratio = 3.0e-9/(s1v_tox_pe*s1v_tox_pe*s1v_tox_pe) MAIN (p1 p2 p3 p4) gpdk090_pmos1v w=w l=l nrd=nrd nrs=nrs multi=multi GDF1 (p2 p1) bsource i = w*0.6*s1v_xj_pe* *tox_ratio*v(p2, p1)*sqrt( (v(p2, p1) *log(9.32E19/s1v_pldd_surf))*(v(p2, p1)-0.026*log(9.32e1 9/s1v_pldd_surf)) + 1.0e-4 )*exp( e11*s1v_tox_pe*( *sqrt( (v(p2, p1) *log(9.32E19/s1v_pldd_surf))*(v(p2, p1)-0.026*log(9.32e19 s1v_pldd_surf)) + 1.0e-4 ))*( *sqrt( (v(p2, p1) *log(9.32E19/s1v_pldd_surf))*(v(p2, p1)-0.026*log(9.32e19/s1v_pldd_surf)) + 1.0e-4 ))) GDF2 (p2 p3) bsource i = w*0.6*s1v_xj_pe* *tox_ratio* sqrt( (v(p2, p3) *log(9.32E19/ )) + 1.0e-4 ))) rdp (p1 p11) resistor r = 7.1 * nrd / multi rsp (p3 p33) resistor r = 7.1 * nrs / multi ends s1v_ckt_pch endsection s1v_mac EE115C Winter

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1) (S&S 4.1 4.3) NMOS: electrons flow from Source to Drain PMOS: holes flow from Source to Drain In cut-off ( v < V ), i = 0 GS t D NMOS I-V Characteristics In triode, ( v > V but v v v ) GS t DS GS T W 1

More information

APPENDIX D: Binning BSIM3v3 Parameters

APPENDIX D: Binning BSIM3v3 Parameters APPENDIX D: Binning BSIM3v3 Parameters Below is a list of all BSIM3v3 model parameters which can or cannot be binned. All model parameters which can be binned follow the following implementation: P L P

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 1 none capacitance

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 2 none capacitance

More information

APPENDIX D: Model Parameter Binning

APPENDIX D: Model Parameter Binning APPENDIX D: Model Parameter Binning Below is the information on parameter binning regarding which model parameters can or cannot be binned. All those parameters which can be binned follow this implementation:

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Integrated Circuit Design: OTA in 0.5µm Technology

Integrated Circuit Design: OTA in 0.5µm Technology Integrated Circuit Design: OTA in 0.5µm Technology Omar X. Avelar, Omar de la Mora & Diego I. Romero INTEGRATED CIRCUITS DESIGN (ESI108A) Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO)

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded) EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded) Assume the CMOS process is characterized by model parameters V TH =1V and µc OX =100µA/V 2. If any other model parameters

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Study of MOSFET circuit

Study of MOSFET circuit ECE 570 Computer Aided Engineering for Integrated Circuits IC 752 - E Simulation Assignment No. 3 - Due: Oct. 30 (Th.), 2003 Study of MOSFET circuit Simulate the basic circuit of CMOS shift register shown

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon)

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon) EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon) Assume the CMOS process is characterized by model parameters VTH=1V and µcox=100µa/v 2. If any other model parameters

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1

num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1 ** num_1a.sp **SAM *circuit description vds 1 0 10 vgs 3 0 5 * Mosfet circuit M1 2 3 0 0 nch L=.5u w=8u R1 1 2 0 ~, Mosfet model.model nch nmos LEVEL = 1 TONS LST NODE POST.DC vds 0 10 100m vgs 0 1.PRNT

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate?

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate? Page 1 of 6 EE 434 Exam 2 Fall 2004 Name Instructions: nswer the following questions and solve the following problems. In problems relating to timing or delay calculations, assume you are working in a

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Old Content - visit altium.com/documentation Modified by Phil Loughhead on 4-Mar-2014 Model Kind Transistor Model Sub-Kind MOSFET SPICE

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 Lecture 4: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Agenda MOS ransistor Modeling MOS Spice Models MOS High-Order

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

Lecture 11: MOSFET Modeling

Lecture 11: MOSFET Modeling Digital Integrated Circuits (83-313) Lecture 11: MOSFET ing Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,

More information

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model - Fall 00 Lecture 5 CMO Inverter MO Transistor Model Important! Lab 3 this week You must show up in one of the lab sessions this week If you don t show up you will be dropped from the class» Unless you

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 2 What do digital IC designers need to know? 5 EE4 EECS4 6 3 0< V GS - V T < V DS Pinch-off 7 For (V GS V T )

More information

Chapter 5: BSIM3v3 Characterization

Chapter 5: BSIM3v3 Characterization 5: BSIM3v3 Characterization The BSIM3 model (BSIM = Berkeley Short channel Insulated gate field effect transistor Model) was published by the University of California at Berkeley in July 1993. BSIM3 is

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 29-1 Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 Contents: 1. Non-ideal and second-order

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material EE-Fall 7 igital Integrated Circuits MO Transistor Lecture MO Transistor Model Announcements Review: hat is a Transistor? Lab this week! Lab next week Homework # is due Thurs. Homework # due next Thurs.

More information

ECE 305: Fall MOSFET Energy Bands

ECE 305: Fall MOSFET Energy Bands ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

ECE-305: Spring 2016 MOSFET IV

ECE-305: Spring 2016 MOSFET IV ECE-305: Spring 2016 MOSFET IV Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu Lundstrom s lecture notes: Lecture 4 4/7/16 outline

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

Digital Integrated Circuits

Digital Integrated Circuits Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter :

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 Contents: 1. Second-order and

More information

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B MOS Device Modeling C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of Agilent eesoft 1 Overview Reading Rabaey 3.3 W&H 2.2-2.4 Overview This class will look at the iv and CV characteristics of an MOS device

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

EE115C Digital Electronic Circuits Homework #3

EE115C Digital Electronic Circuits Homework #3 Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56-147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

MITLL Low-Power FDSOI CMOS Process

MITLL Low-Power FDSOI CMOS Process MITLL Low-Power FDSOI CMOS Process Device Models Revision 2006:2 (September 2006) 2006 by MIT Lincoln Laboratory. All rights reserved. This work was sponsored by the United States Air Force under Air Force

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS EE 240B Spring 2018 Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models Elad Alon Dept. of EECS Square Law Model? Assumptions made to come up with this model: Charge density determined

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

6.012 MICROELECTRONIC DEVICES AND CIRCUITS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 MICROELECTRONIC DEVICES AND CIRCUITS Answers to Exam 2 Spring 2008 Problem 1: Graded by Prof. Fonstad

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information