EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Size: px
Start display at page:

Download "EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania"

Transcription

1 1 EE 560 MOS TRANSISTOR THEORY PART

2 nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION REGION V S = 0 channel V G > V T0 SiO V D = V DSAT C GC C BC substrate or bulk B p depletion region pinch-off point

3 5 nmos TRANSISTOR IN SATURATION REGION V S = 0 channel V G > V T0 SIO V D > V DSAT C GC substrate or bulk B p C BC depletion region pinch-off point

4 MOSFET CURRENT - VOLTAGE CHARACTERISTICS V S = V B = 0 V G > V T0 6 V DS C GC substrate or bulk B p x C BC y y = 0 y = L y = 0 y Channel length = L y = L Channel width = Source side inversion layer (channel) dy Drain side

5 MOSFET CURRENT - VOLTAGE CHARACTERISTICS V S = V B = 0 V G > V T0 7 V DS C GC substrate or bulk B Boundary conditions: V CS (y = 0) = V S = 0 V CS (y = L) = V DS p x y = 0 C BC y V CS (y) y = L Assumptions: V T0 (y) = V T0 > V T0 Mobile charge in channel: V GD = - V DS > V T0 Q I (y) = C ox [ V CS (y) V T 0 ] dr = dy 1 µ n Q I (y) µ n = electron mobility = cm /Vsec [µ > U0 in SPICE]

6 MOSFET CURRENT - VOLTAGE CHARACTERISTICS Boundary conditions: Q I (y) = C ox [ V CS (y) V T 0 ] V CS (y = 0) = V S = 0 V CS (y = L) = V DS dr = dy 1 µ n Q I (y) 8 dv CS = dr = L dy = µ n 0 µ n Q I (y) dy Integrating along the channel 0 < y < L and 0 < V CS < V DS : i.e. V DS Q I (y) 0 dv CS = µ n C ox [( V T 0 )V DS V DS / ] = µ C n ox L [(V V )V V GS T 0 DS DS]

7 MOSFET CURRENT - VOLTAGE CHARACTERISTICS 9 = µ C n ox = k' L [(V V )V V GS T 0 DS DS] L [( V T 0 )V DS V DS = k [(V V )V V GS T 0 DS DS] ] k' = µ n C ox [k' -> KP in SPICE] k = k' L

8 MOSFET CURRENT - VOLTAGE CHARACTERISTICS 30 EXAMPLE 3.4 For an n-mos transistor with µ n = 600 cm /Vsec, C ox = 7 x 10-8 F/cm = 0 µm, L = µm, V T0 = 1.0 V, plot the relationship between and V DS,. = k [(V V )V V GS T 0 DS DS] where k = µ n C ox L F = C/V k = µ n C ox L = (600 cm /Vsec)(7x10 8 F/cm ) 0µ m = 0.4 ma/v µ m = 0.1mA/V [( 1.0) V DS V DS ] LINEAR OR TRIODE REGION (ma) V DS = - V T0 VDS V T0 = 5V Assumptions: = 4V > V T0 V = 3V GD = V DS > V T0 V DS (V)

9 MOSFET CURRENT - VOLTAGE CHARACTERISTICS V DS - V T0 = V DSAT SATURATION REGION 31 = µ n C ox = µ n C ox L [(V V )V V GS T 0 DS = V = V - V DSAT GS T0 L [( V T 0 )( V T 0 ) ( V T 0 ) ] (sat) = µ n C ox L ( V T 0 ) 4.0 V (ma) DS = - V T0 LINEAR SAT.0 = 5V = 4V 0 = 3V V DS (V) (sat) V T0

10 MOSFET CURRENT - VOLTAGE CHARACTERISTICS CHANNEL LENGTH MODULATION Boundary conditions: V CS (y = 0) = V S = 0 V CS (y = L) = V DS Q I (y) = C ox [ V CS (y) V T 0 ] Q I (y = 0) = C ox [ V T 0 ] Q 1 (y = L) = C ox [ V DS V T 0 ] 3 V S = 0 V G > V T0 = V DS = V DSAT V D > V DSAT substrate or bulk B p C GC C BC L' L L L' = L L effective channel length V CS (y = L') = V DSAT

11 MOSFET CURRENT - VOLTAGE CHARACTERISTICS V S = 0 V G > V T0 V D > V DSAT 33 substrate or bulk B p C GC C BC L' L L (sat) = µ n C ox where L L' (V T 0 ) = µ C n ox V DS V DSAT L(1 L (V V ) L ) GS T 0 emperical relation: 1 1 L = 1 + λv DS [λ -> LAMBDA in SPICE] L λ = channel length modulation coefficent (V -1 )

12 MOSFET CURRENT - VOLTAGE CHARACTERISTICS L' (V T 0 ) = µ C n ox (sat) = µ n C ox 1 1 L L = 1 + λ V DS (sat) = µ n C ox L(1 L (V V ) L ) GS T 0 L ( V T 0 ) (1 + λ V DS ) V (ma) DS = - V T0 λ 0 λ 0 λ = 5V = 4V = 3V V DS (V)

13 MOSFET CURRENT - VOLTAGE CHARACTERISTICS 35 SUBSTRATE BIAS EFFECT = f(, V DS, V SB )

14 MOSFET CURRENT - VOLTAGE CHARACTERISTICS n-mos G + n-mos = 0 D + V DS - + S for V T S B G - - B V SB p-mos + D V SB V DS 36 > V T, V DS < - V T > V T, V DS > - V T p-mos = 0 for V T < V T, V DS > - V T < V T, V DS < - V T

15 MOSFET CURRENT - VOLTAGE CHARACTERISTICS MEASUREMENT OF PARAMETERS (V T0, γ, λ, k n, k p ) k n = µ n C ox k L p = µ p C ox L 37 D G S B + V SB + V DS = (sat) = k n ( V T 0 ) k n (sat) = (V V ) GS T 0 V SB = 0 V SB > 0 Gamma V T0 V T1

16 MOSFET CURRENT - VOLTAGE CHARACTERISTICS 38 Lambda = V T G D S B + V DS > - V T0 1 V BS = 0 = V T0 + 1 (sat) = k n ( V T 0 ) (1+ λ V DS ) = V T0 + 1 V DS1 V DS V DS 1 = 1+ λv DS 1 + λ V DS1

17 EFFECTIVE CHANNEL LENGTH AND IDTH B S C GC C GC G D 39 substrate or pbulk B n + C BC BC n + n + n + p LD LD L L eff L M SPICE Parameters L eff = L M - LD - DL LD -> under diffusion DL -> error in photolith and etch eff = M - D SPICE Parameters D -> error in photolith and etch

18 MOSFET - SCALING SCALING -> refers to ordered reduction in dimensions of the MOSFET and other VLSI features Reduce Size of VLSI chips. Change operational charateristics of MOSFETs and parasitics. Phyiscal limits restrict degree of scaling that can be achieved. SCALING FACTOR = α > 1 --> S First-order "constant field" MOS scaling theory: The electric field E is kept constant, and the scaled device is obtained by applying a dimensionless scale-factor α to (such that E is unchanged): a. All dimensions, including those vertical to the surface (1/α) b. device voltages (1/α) c. the concentration densities (α). (1/α)/(1/α) = 1 <=> α(1/α) = 1 40

19 MOSFET - SCALING Alternative Scaling Rules: Constant Voltage Scaling, i.e. V DD is kept constant, while the process is scaled. a. All dimensions, including those vertical to the surface (1/α) b. device voltages (1) c. the concentration densities (α ). 1/(1/α) = α <=> α (1/α) = α 41 Lateral Scaling: only the gate length is scaled L = 1/α (gate-shrink). Year Feature Size(µm) Historical reduction in min feature size for typical CMOS Process

20 Influence of Scaling on MOS Device Performance PARAMETER SCALING MODEL Constant Field Constant Voltage Lateral 4 Length (L) 1/α 1/α 1/α idth () 1/α 1/α 1 Supply Voltage (V) 1/α 1 1 Gate Oxide thickness (t ox ) 1/α 1/α 1 Junction depth (X j ) 1/α 1/α 1 Substrate Doping (N A ) α α 1 Current (I) - (/L) (1/t ox )V 1/α α α Power Dissipation (P) - IV 1/α α α Electric Field Across Gate Oxide - V/t ox 1 α 1 Load Capacitance (C) - L (1/t ox ) 1/α 1/α 1/α Gate Delay (T) - VC/I 1/α 1/α 1/α

21 p B MOSFET CAPACITANCES S n + C GC C GC C BC BC n + n + G D n + 43 substrate or p bulk B LD LD L eff substrate or bulk B p L M L D L D n + n + Y

22 MOSFET CAPACITANCES 44 C gb D C gd C db G MOSFET (DC MODEL) B C gs C sb S C gd, C gs, C gb -> Oxide Capacitances C db, C sb -> Junction Capacitances

23 MOSFET CAPACITANCES 45 OXIDE Capacitances a. Overlap Caps C ox = ε ox t ox C GS (overlap) = C ox L D C GD (overlap) = C ox L D b. Gate - Channel MOSFET - Cut-off Region ALL MOSFET OPERATION REGIONS C gb = C ox L C gs = C gd = 0 p

24 MOSFET CAPACITANCES b. Gate - Channel MOSFET - Linear Region 46 C gb = 0 p C gs = (1/) C ox L C gd = (1/) C ox L p C gb = 0 C gs = (/3) C ox L C gd = 0

25 Capacitance Cut-off Linear Saturation 47 1 /3 1/ C gb (total) C gd (total) C gs (total) (C/C ox L) Cut-off C gb C ox L C ox L D 0 +C ox L D Saturation C gs 0.5C ox L + C ox L D 0.5C ox L + C ox L D Linear C gd 0 + C ox L D (/3)C L ox + C ox L D Gate -to Channel/Bulk Cap Contribution V T V T + V DS

26 JUNCTION Capacitances -> C db, C sb 48 x j p x d Y x j n + Channel n + 4 Source Drain

27 JUNCTION Capacitances -> C db, C sb Y 49 1 n + Channel n + 4 [x j -> XJ in SPICE] Source Drain Junction Area Type x j Y x j x j Y x j Y n + /p n + /p + n + /p + n + /p + n + /p 5 3 x j p - Substrate -> N A p + - Channel-stop -> 10N A

28 JUNCTION Capacitances -> C db, C sb 50 n +, p junctions p N A x d N D x j x d = ε Si q N A N D (φ V) V = Ext bias --> V DB, V SB 0 φ 0 = kt q ln N N built-in junction A D n i potential [φ Depletion-region charge 0 -> PB in SPICE] Q j = Aq N N A D N A + N D x = A ε q N A N D d Si N A + N D (φ V) 0 C j = dq j dv = A ε Si q N A N D N A + N D 1 φ 0 V = AC j 0 1 V φ 0 1/ A = junction area [AS, AD -> Source, Drain Areas in SPICE]

29 C j = dq j dv = A ε q 51 Si N A N D 1 N A + N D φ 0 V = AC j 0 1 V 1/ (F) φ 0 m = grading coefficent C (F/cm j0 = ε q Si N A N D ) N m = 1/ for abrubt junction A + N 1 D φ 0 [m = MJ in SPICE] C j = C j0 when V = 0 [C j0 -> CJ in SPICE] [φ 0 -> PB in SPICE] EQUIVALENT LARGE SIGNAL CAPACTIANCE = AC j 0 φ 0 ( 1) 1 V (V V 1 )(1 m) φ 0 1 m 1 V 1 φ 0 1 m m = 1/ C eq = AC j0 K eq 0 < K eq < 1 --> Voltage Equiv Factor

30 n +, p + junctions (Sidewalls) 5 C j0sw = ε Si q N A (sw)n D N A (sw) + N D 1 φ 0sw (F/cm ) Since all sidewalls have depth = x j : [x j -> XJ in SPICE] C jsw = C j0sw x j (F/cm) [C jsw -> CJS in SPICE] EQUIVALENT LARGE SIGNAL CAPACTIANCE C eq (sw) = P C jsw K eq (sw) P = sidewall perimeter [PS, PD -> Source, Drain Perimeters in SPICE] K eq (sw) = φ 0sw (V V 1 ) 1 V φ 0sw 1/ 1 V 1 φ 0sw [m(sw) -> MJS in SPICE] 1/ m(sw) = 1/

31 EXAMPLE 3-8 Determine the total junction capacitance at the drain, i.e. C db, for the n-channel enhancement MOSFET in Fig. 1. The process parameters are Substrate doping N A = x cm -3 Source/drain (n+) doping N D = 10 0 cm -3 Sidewall (p+) doping N A (sw) = 4 x cm -3 Gate oxide thickness t ox = 45 nm Junction depth x j = 1.0 µm 10 µm G 53 5 µm D S n + n + Figure 1 µm Source, Drain are surrounded by p + channel-stop. The substrate is biased at 0V. Assume the drain voltage range is 0.5 V to 5.0 V.

32 54 where C j0 = ε Si q N A N D N A + N 1 D φ 0 C j0sw = ε Si q N A (sw)n D N A (sw) + N D 1 φ 0sw

33 5 µm 10 µm D S n + n + Figure 1 µm φ 0, φ 0sw φ 0 = kt q ln N N A D n i = 0.06Vln ( x1015 )10 0.1x10 0 G N A = x cm -3 N D = 10 0 cm -3 N A (sw) = 4 x cm -3 t ox = 45 nm x j = 1.0 µm = 0.896V φ 0sw = kt q ln N (sw)n A D n i = 0.06Vln (4x1016 )10 0.1x10 0 = 0.975V 55 C j0, C j0sw C j0 = ε Si q N A N D N A + N D 1 φ 0 = (1.04 x10 1 F/cm)(1.6x10 19 C) = 1.35x10 8 F/cm ( x10 15 )10 0 x V

34 C j0sw = ε Si q N A (sw)n D N A (sw) + N D 1 φ 0sw 56 = (1.04 x10 1 F/cm)(1.6x10 19 C) = 5.83x10 8 F/cm (4x10 16 )10 0 4x V C jsw C jsw = C j0sw x j = (5.83x10 8 F/cm )(10 4 cm) = 5.83pF/cm K eq, K eq (sw) V BD1 = V B - V D1 = 0-0.5V = -0.5V V BD = V B - V D = 0-5V = -5V

35 57 Area, Perimeter Y n + Channel P D n + 4 Source Drain A D : n + /p junctions: 5 µm A D = (5 x 1) µm + (10 x 5) µm = 55 µm P D : n + /p + + junctions: P D = Y + = 0 µm + 5 µm = 5 µm x j Figure 1 10 µm C db = A D C j 0 K eq + P D C j0sw K eq (sw) = 11.6fF G D S n + n + µm

36 Mobility Degradation due to Longitudinal Electric Field: VELOSITY SATURATION (very small channel lengths + high supply voltages) v Dsat velosity(v D ) slope = µ 0 E crit slope µ s µ 0 = v sat /E crit E Note µ s < µ 0 [SPICE Parameters: U0 -> µ 0, UCRIT -> E crit, VMAX -> v sat ] (sat) = v DSAT Q I = v DSAT C ox V DSAT = v DSAT C ox ( - V T ) Note: (sat) = linear f( - V T ), independent of L E y 58

37 Mobility Degradation due to Tranverse Electric Field: (due to gate voltage across very thin oxide-depletion layer) 59 µ n (eff) = µ n 0 1+ Θ E x µ n0 1+η( V T ) E x Short Channel Effect - V T0 (short channel) = V T0 - V T0 L eff --> x j L L S L D x j V T 0 = 1 x ds qε Si N A φ F x j L C ox x dd gate induced 1 + x ds 1 x j + 1+ x dd x j 1

38 60 Narrow Channel Effect - V T0 (narrow channel) = V T0 + V T0 --> x dm Thick Ox L Q NC Drain Poly Gate x dm Source Q NC Thin Ox V T 0 = 1 C ox qε Si N A φ F κ x dm

39 SPICE MODELING OF MOS CAPACITANCES 61 M NFET =4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U. m. m m. U = 10.MODEL NFET NMOS -6 cm + TOX=00E-8 F/m P = CGBO=00P CGSO=300P CGDO=300P + CJ=00U CJS=400P MJ=0.5 MJS=0.3 PB=0.7 V F/m F/m M NFET =4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U D G S B C gb = L C ox = pf = pf

40 M NFET =4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U..MODEL NFET NMOS + TOX=00E-8 + CGBO=00P CGSO=300P CGDO=300P + CJ=00U CJS=400P MJ=0.5 MJS=0.3 PB=0.7 6 C j = Area CJ 1 + V -MJ j V - + Periphery CJS j PB PB CJ = zero-bias junction capacitance per junction area -MJS ( F/m = 10-4 pf/µm ) CJS = zero-bias junction capacitance per junction periphery ( F/m = pf/µm) MJ = grading coefficient of junction bottom (0.5) MJS = grading coefficient of junction side-wall (0.3) VJ = the junction potential (V sb, V db for n-channel, V bs, V bd for p-channel) PB = the built-in voltage (+0.7 V) Area = AS or AD, the area of source or drain ( m = 15 µm ) Periphery = PS or PD, the periphery of source or drain ( m = 11.5 µm)

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv ECE 440 Spring 005 Page 1 Homework Assignment No. Solutions P.4 For each transistor, first determine if the transistor is in cutoff by checking to see if GS is less than or greater than. may have to be

More information

ESE 570 MOS TRANSISTOR THEORY Part 2

ESE 570 MOS TRANSISTOR THEORY Part 2 ESE 570 MOS TRANSISTOR THEORY Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation CMOS = NMOS + PMOS 2 TwoTerminal MOS Capacitor > nmos Transistor VGS

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

ECE321 Electronics I

ECE321 Electronics I EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman Zarkesh-Ha Office: EE Bldg. 3B Office hours: Tuesday :-3:PM or by appointment E-mail: payman@ece.unm.edu Slide: 1

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 29-1 Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 Contents: 1. Non-ideal and second-order

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation ELEC 3908, Physical Electronics, Lecture 27 MOSFET Scaling and Velocity Saturation Lecture Outline Industry push is always to pack more devices on a chip to increase functionality, which requires making

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design MOS igital ntegrated ircuits Analysis and esign hapter 4 Modeling of MOS ransistors Using SPE 1 ntroduction he SPE software that was distributed by U Berkeley beginning in the late 1970s had three built-in

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 2 What do digital IC designers need to know? 5 EE4 EECS4 6 3 0< V GS - V T < V DS Pinch-off 7 For (V GS V T )

More information

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th MOSFET Id-Vd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. Quantitative MOSFET Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. V DS _ n source polysilicon gate y = y * 0 x metal interconnect to

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

Non Ideal Transistor Behavior

Non Ideal Transistor Behavior Non Ideal Transistor Behavior Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, Addison- Wesley, 3/e, 2004 1 Non-ideal Transistor I-V effects Non ideal transistor Behavior Channel Length ModulaJon

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Conduction in Semiconductors -Review

Conduction in Semiconductors -Review Conduction in Semiconductors Review Intrinsic (undoped) Semiconductors intrinsic carrier concentration n i =.45x0 0 cm 3, at room temp. n = p = n i, in intrinsic (undoped) material n number of electrons,

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

MOSFET Physics: The Long Channel Approximation

MOSFET Physics: The Long Channel Approximation MOSFET Physics: The ong Channel Approximation A basic n-channel MOSFET (Figure 1) consists of two heavily-doped n-type regions, the Source and Drain, that comprise the main terminals of the device. The

More information

Chapter 2 MOS Transistor theory

Chapter 2 MOS Transistor theory Chapter MOS Transistor theory.1 Introduction An MOS transistor is a majority-carrier device, which the current a conductg channel between the source and the dra is modulated by a voltage applied to the

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Main CMOS design rules & basic circuits GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model

More information

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M - 0 > V M - V Tn V SDp = V DD - V M = (V DD - V M ) V Tp Equate drain

More information

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information