Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since


 Cory Ward
 4 years ago
 Views:
Transcription
1 Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M  0 > V M  V Tn V SDp = V DD  V M = (V DD  V M ) V Tp Equate drain currents, omitting the channel length modulation terms (1 λ n V DSn ) and (1 λ p V SDp ) since they tend to cancel out (if λ n = λ p, they exactly cancel out) I Dn = µ n C ox ( 2L V M Ð V Tn) 2 n Ð I Dp = µ p C ox ( 2L p V DD Ð V M V Tp) 2 Letting k n = µ n C ox (/L) n and k p = µ p C ox (/L) p k 2 n ( V M Ð V Tn ) 2 = k p ( V DD Ð V M V Tp ) 2
2 Finding V M (cont.) Result: V M = k p V Tn ( V k DD V Tp ) n k p k n e can set V M = V DD / 2 and achieve a symmetrical transfer curve Example: suppose V Tn =  V Tp = 1 V and V DD = 5 V k p k n V M = = 2.5 k p k n V > k p = k n which makes sense since the transistors must have identical characteristics for the transfer curve to be symmetrical. The mobility of holes in pchannels is about half that of electrons in nchannels, µ p = µ n / 2, which implies that we must adjust the widthlength ratios to compensate: k n = k p > (/L) p = 2(/L) n
3 Step 2. Finding A v s2 v sg2 g mp v sg2 r op _ g1 = g2 d1=d2 v out v in _ v gs1 _ g mn v gs1 r on s1 e note that v sg2 =  v in and can simplify the smallsignal circuit v in v g mn v r on r op g mp v v out
4 Approximate Transfer Curve The smallsignal gain (which is the slope of the transfer curve when the input is equal to the midpoint voltage) is: v out v in = Ð( g mn g mp )( r on r op ) = A v CMOS inverters have a channel length that is as short as possible (to minimize the area... and maximum the density)... the output resistances are relatively small and a typical value is v out / v in =  5 to * The inputlow and inputhigh voltages are: V OUT V OH = V DD A v V DD V M A v V OL = 0 V V IL V M V IH V IN V IL = V M Ð ( V DD ( 2 A v )) V IH = V M ( V DD ( 2 A v ))
5 Noise Margins For k N = k P, the midpoint voltage is V M = 2.5 V. For a slope A v =  5, the inputlow voltage and inputhigh voltages are: V IL = 2.5 V  (1/5) (2.5 V) = 2 V V IH = 2.5 V (1/5) (2.5 V) =3 V The low and high noise margins are therefore: N ML = V IL  V OL = 20 = 2 V N MH = V OH  V IH =53 = 2 V The transition region (or Ògray areaó) is the interval V IL < V IN < V IH or 2 V < V IN < 3 V Finding the actual transfer function requires solving the drain current equations when the pchannel and nchannel are in the appropriate operating regions... and Þnding the transition voltages for the regions. SPICE is good at this job!
6 CMOS Inverter: Propagation Delay The propagation delays t PHL and t PLH are obviously of major importance for digital circuit design... Example: clock frequency = 250 MHz > clock period = 4 ns complex systems (e.g., microprocessor) have around propagation delays per clock period, so we need to have t PLH and t PHL < 100 ps = s Hand calculation of propagation delays: use approximation that input changes instantaneously V IN V OH t CYCLE V OL t V OUT t PHL t PLH VOH V OH V OL 50% t CYCLE t
7 Estimating the Load Capacitance The load capacitance C L consists of C G, the input capacitances of the inverters 2 and 3, and C P, the parasitic capacitance to the substrate from the drain regions of inverter 1 and the interconnections between the output of inverter 1 and the inputs of inverters 2 and 3. V DD L p2 V DD V DD 2 L n2 L p1 V IN V IN 1 V DD C L V OUT L n1 3 L p3 L n3 (a) (b) For hand calculation, we do a worst case estimate of C G by adding the maximum gate capacitances for inverters 2 and 3 C G = C ox [( L) p2 ( L) ( L) n2 p3 ( L) ] n3
8 Parasitic Capacitance from Drain Depletion Regions The drain n and p regions have depletion regions whose stored charge changes during the transient. Take the worst case and use the zerobias depletion capacitance (the maximum, value) as a linear chargestorage element during the transient. active area (thin oxide area) gate contact gate polysilicon gate interconnect contact n polysilicon gate metal interconnect,,,,,,,,,,,,,,,,,, A, source contacts source interconnect L (b) L drain interconnect,,,, bulk contact drain contacts edge of active area L diff
9 Calculation of Parasitic Depletion Capacitance ÒBottomÓ of depletion regions of the load invertersõ drain diffusions contribute a depletion capacitance C BOTT = C Jn ( n L diffn ) C Jp ( p L diffp ) with C Jn and C Jp being the zerobias junction capacitances (ff/µm 2 ) for the n channel MOSFET drainbulk junction and the pchannel MOSFET drainbulk junction, respectively. ÒSidewallÓ of depletion regions of the load invertersõ drain diffusions make an additional contribution: C S = ( n 2L diffn )C JSn ( p 2L diffp )C JSp with C JSn and C JSp being the zerobias sidewall capacitances (ff/µm) for the nchannel MOSFET drainbulk junction and the pchannel MOSFET drainbulk junction, respectively. The total depletion capacitance C DB = C BOTT C S Typical numbers: C JN and C JP are about 0.2 ff/µm 2 and C JSn and C JSp are about 0.5 ff/µm.
10 Parasitic Capacitance from Interconnections ÒiresÓ consist of metal lines connecting the output of the inverter to the input of the next stage. In cross section, polysilicon gate,, metal interconnect (width m, length L m ),,,, 0.6 µm deposited oxide 0.5 µm thermal oxide p p (grounded) gate oxide The p layer (i.e., heavily doped with acceptors) under the thick thermal oxide (500 nm = 0.5 µm) and deposited oxide (600 nm = 0.6 µm) depletes only slightly when positive voltages appear on the metal line, so the capacitance is approximately the oxide capacitance: C IRE = C thickox ( m L m ) where the oxide thickness = 500 nm 600 nm = 1.1 µm. * For large digital systems, the parasitic interconnect capacitance can dominate the load capacitance  C L = C G C P = C G (C DB C IRE )
HightoLow Propagation Delay t PHL
HightoLow Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (nchannel) immediately switches from cutoff to saturation; the pchannel pullup switches from triode to
More informationLecture 14  Digital Circuits (III) CMOS. April 1, 2003
6.12  Microelectronic Devices and Circuits  Spring 23 Lecture 141 Lecture 14  Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationThe Physical Structure (NMOS)
The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two
More informationVLSI Design and Simulation
VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model
ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationLecture 12 Circuits numériques (II)
Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationCMOS Logic Gates. University of Connecticut 181
CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O pchannel enhancementtype MOSFET; V T < 0 nchannel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing
EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104113) S R on D CMOS Manufacturing Process (pp. 3646) S S C GS G G C GD
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationCMOS Logic Gates. University of Connecticut 172
CMOS Logic Gates University of Connecticut 172 Basic CMOS Inverter Operation V IN P O N O pchannel enhancementtype MOSFET; V T < 0 nchannel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and
More informationLecture 13  Digital Circuits (II) MOS Inverter Circuits. March 20, 2003
6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationDigital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationFundamentals of the Metal Oxide Semiconductor FieldEffect Transistor
Triode Working FET Fundamentals of the Metal Oxide Semiconductor FieldEffect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More information4.10 The CMOS Digital Logic Inverter
11/11/2004 section 4_10 The CMOS Digital Inverter blank.doc 1/1 4.10 The CMOS Digital Logic Inverter Reading Assignment: pp. 336346 Complementary MOSFET (CMOS) is the predominant technology for constructing
More informationLecture 210 Physical Aspects of ICs (12/15/01) Page 2101
Lecture 210 Physical Aspects of ICs (12/15/01) Page 2101 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: TextSec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More informationCharge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )
The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max =  φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationQuantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.
Quantitative MOSFET Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. V DS _ n source polysilicon gate y = y * 0 x metal interconnect to
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationLecture 12 CMOS Delay & Transient Response
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology
More informationECE 497 JS Lecture  12 Device Technologies
ECE 497 JS Lecture  12 Device Technologies Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationUniversity of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA
University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm 3 @
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationThe Devices. Jan M. Rabaey
The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationEEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationMOS Transistor Properties Review
MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO
More informationCheck course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory
EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday
More informationLecture 310 OpenLoop Comparators (3/28/10) Page 3101
Lecture 310 OpenLoop Comparators (3/28/10) Page 3101 LECTURE 310 OPENLOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, openloop comparators Twopole, openloop
More informationDC & Transient Responses
ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = > = When = > = In between, depends on transistor size and current
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationCMOS Digital Integrated Circuits Lec 13 Semiconductor Memories
Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) ReadOnly Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask
More informationIntroduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline
Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and
More informationLow Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 08 MOS Inverters  III Hello, and welcome to today
More informationElectronic Devices and Circuits Lecture 16  Digital Circuits: CMOS  Outline Announcements (= I ON V DD
6.01  Electronic Deices and Circuits Lecture 16  Digital Circuits: CMOS  Outline Announcements Handout; Web posting  Lecture Outline and Summary; two readings Exam  Wednesday, No. 5, 7:309:30 pm,
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationThe Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationImportant! EE141 Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model
 Fall 00 Lecture 5 CMO Inverter MO Transistor Model Important! Lab 3 this week You must show up in one of the lab sessions this week If you don t show up you will be dropped from the class» Unless you
More informationDigital Integrated Circuits EECS 312
14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More informationECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
More informationLecture 5: CMOS Transistor Theory
Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos IV Characteristics
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationErrata of K Introduction to VLSI Systems: A Logic, Circuit, and System Perspective
Errata of K13126 Introduction to VLSI Systems: A Logic, Circuit, and System Perspective Chapter 1. Page 8, Table 11) The 0.35µm process parameters are from MOSIS, both 0.25µm and 0.18µm process parameters
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationNTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate
NTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate Description: The NTE4501 is a triple gate device in a 16 Lead DIP type package constructed with MOS P
More informationTopics to be Covered. capacitance inductance transmission lines
Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of
More informationMOS Capacitors ECE 2204
MOS apacitors EE 2204 Some lasses of Field Effect Transistors MetalOxideSemiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. MetalSemiconductor Field
More informationThe Devices: MOS Transistors
The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor
More informationCOMP 103. Lecture 16. Dynamic Logic
COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03
More informationTHE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design
chapter5.fm Page 176 Friday, January 18, 2002 9:01 M CHPTER 5 THE CMOS INVERTER Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design 5.1 Introduction
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationEE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania
1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationDigital Electronics Part II  Circuits
Digital Electronics Part  Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are nonlinear, consequently we will introduce a graphical technique for analysing such circuits The
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 1  The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM
More information