ESE 570 MOS TRANSISTOR THEORY Part 2

Size: px
Start display at page:

Download "ESE 570 MOS TRANSISTOR THEORY Part 2"

Transcription

1 ESE 570 MOS TRANSISTOR THEORY Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation

2 CMOS = NMOS + PMOS 2

3 TwoTerminal MOS Capacitor > nmos Transistor VGS << VT0 NMOS TRANSISTOR IN CUTOFF REGION VG VD VS Substrate or Bulk B Depletion region p Immobile acceptor ions 3

4 TwoTerminal MOS Capacitor > nmos Transistor VGS = VT0n + δ Onset of INVERSION VG QI VD QB0 4

5 MOS Transistor Regions of Operation + n + n 5

6 MOS Transistor Regions of Operation + n + n 6

7 MOS Transistor Regions of Operation VDS = VD VDSAT = VGS VT0 VDS VDSAT VGD = VGS VDS < VT0 z n+ VCS(y) = VDSAT n+ 7

8 MOSFET CURRENT VOLTAGE CHARACTERISTICS VG = VGS > VT0 and VGD > VT0 VD = small n+ z z n+ yy x 2 dy V sec cm dr= 0.= 2 W 7n Q I 0 y cm C µn = U0 = electron mobility = cm2/{v sec} 8

9 VG = VGS > VT0 VD = VDS n+ n+ z VCS(y) VCS(y = 0) = VS = 0 VCS(y = L) = VDS Ey >> Ex, Ez Mobile charge in inverted channel: QI(y) = Cox [VGS VCS(y) VT0] I = V R 9

10 QI(y) = Cox [VGS VCS(y) VT0] VCS(y = 0) = VS = 0 VCS(y = L) = VD dvcs ID dv CS = I D dr= dy W 7n Q I 0 y 0 VCS(y) VDS dvcs VGS VCS VT0 dv CS 2 CS (VGS VT0)VCS V /2 VCS = VDS VCS = 0 0

11 KP > Transconductance Parameter 2 cm C C /s A KP=7n C ox =0 0 = 2 = 2 2 Vs V cm V V

12 ID(VDS = VDSAT) and VDSAT = VGS VT0 Assumptions: 2

13 @VDS = VDSAT = VGS VT0 7n C ox W 2 I D 0 sat = 0V GS V T0 2 L ID(VDS = VDSAT) = ID(sat) LINEAR SAT IN GENERAL ID(sat) 3

14 VDSAT + n 2L n+ V DS V DSAT,6V DS 2 L 6V DS for 6V DS L 4

15 Compatible Eqs.? ID = f(vgs, VDS)

16 VDS = VDSAT 6

17 6V DS 7

18 / / V T =V T0, F V SB 2 8 F 6V DS 8

19 (VT = VTn > 0) V GD.V T VGS > VT, VDS < VGS VT VGS > VT, VDS VGS VT (VT = VTp < 0) V GD V T V GD V T VGS < VT, VDS > VGS VT VGS < VT, VDS VGS VT V GD.V T 9

20 D G B => SAT S 20

21 => SAT 2

22 n+ n+ 22

23 V GS E ox = volts /cm t ox E= q N A x volts /cm 4si 23

24 V GS E ox = volts/cm t ox Year E= q N A x volts/cm 4 si Feature Size (µm) Historical reduction in min feature size for typical CMOS process 24

25 Load Capacitance (Ccap) WL (/tox) Gate Delay (T) V Ccap/I 25

26 + n LD n+ LD + n n+ 26

27 (nmos, pmos) Model Depletion Region Capacitances 27

28 MOSFET CAPACITANCES Recall Cox = COX and tox = TOX in SPICE CGS0(overlap) = CoxWLD CGD0(overlap) = CoxWLD CGB0(overlap) = CoxWovLM SPICE: CoxLD = CGS0 = CGD0 in F/m; CoxWov = CGB0 in F/m Wov n+ LD W n+ Wov 28

29 CBG0 GatetoBulk Overlap Capacitance CBG0 Gate Extension Design Rule Weff SiO2 = Wov poly n+ p CGB0 = CoxWovLM C4 = 2λ = Wov = SiO2 Wov (conservative estimate) 29

30 Cgb, Cgs and Cgd n+ n+ Leff Leff n+ n+ MOSFET Saturation Region n+ n+ Leff 30

31 GatetoBulk, Drain & Source Oxide Capacitances Summary + 2CGB CGB CGB0 Application of Oxide Capacitance Model:. Approximate: For hand calculations, assume that C gb, Cgd and Cgs are connected in parallel for each region of operation, i.e. Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0 Cutoff Region; Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0 Linear Region; Cg(tot) = 2/3 CoxWLeff + 2CGB0 + CGD0 + CGS0 Saturation Region. and use the maximum value Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0 3

32 Depletion Region Capacitances > Cdb, Csb n+ n+ 32

33 Depletion Region Capacitances > Cdb, Csb n+ + n V = Ext Bias > VSB, VDB + Qj = depletionregion charge A = junction area dq j A C j0 0 AS, AD CJ (F) C j 0V = = = m MJ dv V V 0, 0, PB 80 where 4 Si q 4 Si N A N D 2 (F/cm ) CJ =C j0 = = 0 xd 2 N A,N D 8 0 / ND m = MJ = grading coefficient m = ½ for abrupt junction [AS, AD > Source, Drain Areas in SPICE] [CJ > Cj0 in SPICE] [PB > O0 in SPICE] [MJ > m in SPICE] 33

34 Depletion Region Capacitances > Cdb, Csb Assume Weff = W 34

35 SUMMARY n+, p Junctions C j 0V = where / A C j0 0 AS, AD CJ (F) = m MJ V V 0, 0, PB 80 q 4 Si N A N D CJ =C j0 = 0 2 N A,N D 80 SPICE Parameters (F/cm2) Cj(0) = A Cj0 when V = 0 [AS, AD > Source, Drain Areas in SPICE] [CJ > Cj0 in SPICE] [PB > O0 in SPICE] [MJ > m in SPICE] 35

36 n+, p Junctions C j 0V = A C j0 0 AS, AD CJ = m MJ V V 0, 0, PB 80 voltage dependent EQUIVALENT LINEAR LARGE SIGNAL CAPACITANCE V 2Q Q j 0V 2 Q j 0V C eq = = = C 0V dv V 2 V V 2 V V j 2V 2 A C j0 80 V 2 m V m C j 0V C eq= [0, 0, ] V 2 V m NOTE voltage independent approximation 0 < Keq < > Voltage Equivalence Factor where V V V2 V = Ext Bias > VSB, VDB for nmos VBS, VBD for pmos C j 0V = A C j0 K eq =0 AS, AD CJ K eq 36

37 [PS, PD > Source, Drain Perimeters in SPICE] (F/cm2) [CJSW > C in SPICE] jsw [PBSW > O0SW in SPICE] [MJSW > m(sw) in SPICE] (F/cm) dq jsw C jsw 0V = = dv [XJ > xj in SPICE] P C jsw 0 PS, PD CJSW = m0sw MJSW V V 0, 0, PBSW 80sw m0 sw (F) m0 sw V2 V Recall for n+, p8junctions 0sw K eq 0 sw= [0, 0, 0V 2 V 0 m0 sw dq j A C j0 80 0sw AS, AD CJ 80sw C j 0V = = = (F) m MJ V junction V m(sw) = ½ dv for an abrupt 0, 0, PB 80 ] 37

38 dq jsw C jsw 0V = = dv P C jsw 0 PS, PD CJSW = MJSW V m0sw V 0, 0, PBSW 80sw voltage dependent voltage independent approximation where V V V2 V = Ext Bias > VSB, VDB for nmos VBS, VBD for pmos 38

39 4 CJ =.35 x 08 F/cm2 CJSW = 5.83 x 02 F/cm PB = V PBSW = V XJ = x 04 cm MJ = MJSW = ½ D n+ n+ S 39

40 C j 0V = A C j0 K eq = AD CJ K eq MJ V2 PB K eq = [0, 0V 2 V 0 MJ PB MJ V 0, PB ] CJ =.35 x 08 F/cm2 CJSW = 5.83 x 02 F/cm PB = V PBSW = V XJ = x 04 cm MJ = MJSW = /2 / V 5V 0.5 V /2 = [0, 0, ]= V 0.5 V V v C jsw 0V =P C jsw K eq 0sw =PD CJSW K eq 0sw MJSW V2 PBSW K eq 0 sw= [0, 0V 2 V 0 MJSW PBSW /2 MJSW V 0, PBSW ] / 2 = V [0, 5 V 0, 0.5 V ]=0.53 K eq 05V 0.5 V 0.975V v 40

41 CJ =.35 x 08 F/cm2 CJSW = 5.83 x 02 F/cm PB = V PBSW = V XJ = x 04 cm MJ = MJSW = / C j 0V = A C j0 K eq = AD CJ K eq =055 x 0 cm 0.35 x 0 F / cm 0.52=3.86 ff C jsw 0V =P C jsw K eq 0 sw =PD CJSW K eq 0 sw = 02.5 x 0 3 cm x 0 2 F / cm 0.53=7.72 ff C db = AD CJ K eq,pd CJSW K eq 0sw =.58 ff 4

42 MOSFET CAPACITANCE SUMMARY OXIDE CAPACITANCES Cgb = COX WLeff + CGB0 Cgd = (/2) COX WLeff + CGD0 Cgs = (2/3) COX WLeff + CGS0 Leff = LM 2LD DEPLETION CAPACITANCES Csb = Cj(VSB) + Cjsw(VSB) Cdb = Cj(VDB) + Cjsw(VDB) C j 0V = 0 AS, AD CJ 0 AS, AD CJ K eq Assume: AS = AD MJ V 0, MJ MJ V V PB PB K eq = [0, 2 0, ] 0V 2 V 0 MJ PB PB C jsw 0V = 0 PS, PD CJSW 0 PS, PD CJSW K eq 0 sw Assume: PS = PD MJSW V 0, PBSW V 2 MJSW V MJSW PBSW K eq 0 sw= [0, 0, ] 0V 2 V 0 MJSW PBSW PBSW 42

43 Short Channel Effects Leff xj Velocity saturation limit Reduced electron, hole mobility Reduced threshold voltage V T0 Narrow Channel Effects W xdm Increased threshold voltage V T0 Subthreshold Current VGS < VT0 Nonzero drain current when V < VT0 GS 43

44 SHORT CHANNEL ISSUES v sat cm V cm2 70 =0 /0 = sec cm V sec I D 0sat =W v sat C ox 0V GS V T 7n0 7n 0eff,50V GS V T (Lvl 3) 44

45 SHORT CHANNEL ISSUES CONT. Short Channel Effect Leff xj (source, drain diffusion depth) G S n+ pn+ depletion region G D n+ QB0 Leff xj pn+ depletion region VGS induced depletion region Q ox Q B0 V T0 0long channel =V FB 28 F C ox C ox S D n+ n+ Leff QB0(sc) QB0(sc) << QB0 VT0 (short channel) = VT0 (long channel) ΔVT

46 NARROW CHANNEL ISSUES Narrow Channel Effect W xdm (depletion region depth) fieldoxide W gateoxide Gate Extension design rule fieldoxide QB0(nc) QB0(nc) > QB0 Q ox Q B0 V T0 0long channel =V FB 28 F C ox C ox 46

47 I D 0 subthreshold =I S e V GS n kt / q V DS 0 e kt /q 0,6V DS + 4Si t ox subthreshold swing coefficient: n, 4ox t Si 7 C ox W kt 2 I S 0 L q [SPICE Parameter: N0 > n subthreshold swing coefficient NOTE: ID (subthreshold) is leakage current for stronginversion operation ID (subthreshold) is primary current for weakinversion operation + J. Rabaey, A. Chandrakasan and B. Nikolic; Digital Integrated Circuits 2nd Edition, Prentice Hall, 2003, pp99. 47

48 (MOSIS: Level 3 model used for min feature size µm) (MOSIS: BISIM3 model used for min feature size < µm) 48

49 Complexity of SPICE Models vs. Time BSIM4v6.5 (2009) EKV = EnzKrummenacherVittoz (EKV) model is for lowpower analog circuit simulation. SPICE Parameter Calculator Rochester Institute of Technology 49

50 MOS SPICE MODEL PARAMETERS Name Model Parameters LEVEL Model type (, 2, or 3) L W LD WD Channel Channel Lateral Lateral VTO U0 KP GAMMA PHI LAMBDA Zerobias threshold voltage Mobility Transconductance Bulk threshold parameter Surface potential Channellength modulation (LEVEL = and 2) RD RS RG RB RDS RSH NRS IS JS PB length (designer input) width (designer input) diffusion length diffusion width Drain ohmic resistance Source ohmic resistance Gate ohmic resistance Bulk ohmic resistance Drainsource shunt resistance Drainsource diffusion sheet Resistance Number of squares of RD, RS Bulk pn saturation current Bulk pn saturation/current area Bulk pn potential Units m m m m V cm**2/vs A/V**2 V**/2 V /V Ohms Ohms Ohms Ohms Ohms Ohms/sq. A A/m**2 V 50

51 MOS SPICE MODEL PARAMETERS CONT. Name Model Parameters Units LEVEL Model type (, 2, or 3) CBD CBS CJ CJSW MJ MJSW FC CGSO CGDO CGBO Bulkdrain zerobias pn cap (not used) F Bulksource zerobias pn cap (not used) F Bulk pn zerobias bottom cap/area F/m**2 Bulk pn zerobias perimeter cap/length F/m Bulk pn bottom grading coefficient Bulk pn sidewall grading coefficient Empirical bulk pn forwardbias cap coefficient Gatesource overlap cap/channel width F/m Gatedrain overlap cap/channel width F/m Gatebulk overlap cap/channel width F/m NSUB NSS NFS TOX TPG XJ Substate doping density Surfacestate density Fast surfacestate density Oxide thickness Gate material type: + = opposite of substrate, = same as substrate, 0 = aluminum Metallurgical junction depth /cm**3 /cm**2 /cm**2 m m 5

52 MOS SPICE MODEL PARAMETERS CONT. Name Model Parameters Units LEVEL Model type (, 2, or 3) UCRIT DELTA THETA ETA KAPPA Mobility degradation critical field V/cm (LEVEL=2) Empirical mobility degradation exponent (LEVEL=2) Maximum carrier drift velocity (Level=2) m/s Empirical channel charge coefficient (LEVEL=2) Empirical Fraction of channel charge attributed to drain (Level=2) Empirical channel width effect on VT Empirical mobility modulation (LEVEL=3) /V Empirical static feedback on VT (LEVEL=3) Empirical saturation field factor (LEVEL=3) KF AF Flicker noise coefficient Flicker noise exponent UEXP VMAX NEFF XQC 52

53 Level 3 SPICE Parameters KP (in A/V2) = k'n (k'p) VT0 (in volts) = VTn (VTp) U0 (in cm2/{vs}) = µn (µp) 53

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 1 none capacitance

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

EKV MOS Transistor Modelling & RF Application

EKV MOS Transistor Modelling & RF Application HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 2 none capacitance

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Conduction in Semiconductors -Review

Conduction in Semiconductors -Review Conduction in Semiconductors Review Intrinsic (undoped) Semiconductors intrinsic carrier concentration n i =.45x0 0 cm 3, at room temp. n = p = n i, in intrinsic (undoped) material n number of electrons,

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

APPENDIX D: Binning BSIM3v3 Parameters

APPENDIX D: Binning BSIM3v3 Parameters APPENDIX D: Binning BSIM3v3 Parameters Below is a list of all BSIM3v3 model parameters which can or cannot be binned. All model parameters which can be binned follow the following implementation: P L P

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15 ESE 570 MOS TRANSISTOR THEORY Part 1 TwoTerminal MOS Structure 2 GATE Si Oxide interface n n Mass Action Law VB 2 Chemical Periodic Table Donors American Chemical Society (ACS) Acceptors Metalloids 3 Ideal

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1) (S&S 4.1 4.3) NMOS: electrons flow from Source to Drain PMOS: holes flow from Source to Drain In cut-off ( v < V ), i = 0 GS t D NMOS I-V Characteristics In triode, ( v > V but v v v ) GS t DS GS T W 1

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancement-type N-MOS transistor 5.3 I-V characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

CHAPTER 3 - CMOS MODELS

CHAPTER 3 - CMOS MODELS CMOS Analog Circuit Design Page 3.-1 CHAPTER 3 - CMOS MODELS Chapter Outline 3.1 MOS Structure and Operation 3.2 Large signal MOS models suitable for hand calculations 3.3 Extensions of the large signal

More information

Virtual Device Simulation. Virtual Process Integration

Virtual Device Simulation. Virtual Process Integration : CMOS Process and Device Simulation Virtual Device Simulation Virtual Process Integration Dr Zhou Xing Office: S1-B1c-95 Phone: 6790-4532 Email: exzhou@ntu.edu.sg Web: http://www.ntu.edu.sg/home/exzhou/teaching//

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

The simulated two volt performance of CMOS circuits with submicron transistors

The simulated two volt performance of CMOS circuits with submicron transistors Lehigh University Lehigh Preserve Theses and Dissertations 1992 The simulated two volt performance of CMOS circuits with submicron transistors Christopher John Younger Lehigh University Follow this and

More information

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B MOS Device Modeling C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of Agilent eesoft 1 Overview Reading Rabaey 3.3 W&H 2.2-2.4 Overview This class will look at the iv and CV characteristics of an MOS device

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

APPENDIX D: Model Parameter Binning

APPENDIX D: Model Parameter Binning APPENDIX D: Model Parameter Binning Below is the information on parameter binning regarding which model parameters can or cannot be binned. All those parameters which can be binned follow this implementation:

More information

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching Content MIS Capacitor Accumulation Depletion Inversion MOS CAPACITOR 1 MIS Capacitor Metal Oxide C ox p-si C s Components of a capacitance model for the MIS structure 2 MIS Capacitor- Accumulation ρ( x)

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

The Intrinsic Silicon

The Intrinsic Silicon The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm-3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e -1.21/2KT cm -3 T= temperature in K o (egrees

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Practice 7: CMOS Capacitance

Practice 7: CMOS Capacitance Practice 7: CMOS Capacitance Digital Electronic Circuits Semester A 2012 MOSFET Capacitances MOSFET Capacitance Components 3 Gate to Channel Capacitance In general, the gate capacitance is similar to a

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design MOS igital ntegrated ircuits Analysis and esign hapter 4 Modeling of MOS ransistors Using SPE 1 ntroduction he SPE software that was distributed by U Berkeley beginning in the late 1970s had three built-in

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff

More information

Chapter 2 MOS Transistor theory

Chapter 2 MOS Transistor theory Chapter MOS Transistor theory.1 Introduction An MOS transistor is a majority-carrier device, which the current a conductg channel between the source and the dra is modulated by a voltage applied to the

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

CS/EE N-type Transistor

CS/EE N-type Transistor CS/EE 6710 MOS Transistor Models Electrical Effects Propagation Delay N-type Transistor D + G Vds i electrons +Vgs S - 1 Another Cutaway View Thanks to National Central University for Some images Vgs Forms

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information