EE5311- Digital IC Design

Size: px
Start display at page:

Download "EE5311- Digital IC Design"

Transcription

1 EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 1/41

2 Learning Objectives Explain short channel effects(sce) like Drain Induced Barrier Lowering, Gate Induced Drain Leakage, Sub-threshold leakage, Channel length modulation Derive the equation for ON current of a CMOS transistor with first order SC Estimate various capacitance values for a transistor Estimate the equivalent ON resistance of a transistor Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 2/41

3 Outline Silicon and Doping P-N Junction CMOS Transistor Threshold Voltage ON Current (ION ) Channel length modulation Velocity saturation Sub-threshold leakage Drain Induced Barrier Leakage Gate Induced Drain leakage (Reverse) Short Channel Effect Other leakage mechanisms Capacitance Resistance Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 3/41

4 Silicon and Doping Si Si Si Si Si Si Unbound Electron Si Missing Electron Si P Si Si B Si Si Si N Type Donor P Type Acceptor n i - Intrinsic electron/ hole concentration Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 4/41

5 Device Physics Abstraction 1. Law of Mass Action - Product of concentrations remains constant Where np = n 2 i n/p = Electron/ hole concentration after doping ni = Intrinsic electron/ hole concentration 2. Maxwell Boltzmann Equation - Where n 1 n 2 = e Ψ12 kt/q kt/q - Thermal voltage = 300K n1,n 2 - Charge concentration across a potential ψ 12 Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 5/41

6 PN Junction P W n W p Figure: PN Junction Diode W n N D = W p N A Conservation of charge Note: N D N A = W p W n Current is due to diffusion of minority carriers Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 6/41

7 NMOS Transistor V S V G V D W L e T ox P V B Figure: NMOS transistor V GS < 0 - Accumulation (Surface becomes more P type than bulk) 0 V GS < V TH - Depletion (Surface is less P type than bulk) V GS V TH - Inversion (Surface is more N than the bulk is P) Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 7/41

8 Threshold Voltage B S G D Ψ S n Bulk e = n2 i NA n Surface e = N A P Figure: G = V TH - Channel is as N-type as the body is P-type Ψ S = 2 kt q ln(n A n i ) V GB = ψ OX +ψ S Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 8/41

9 Threshold Voltage W D = Depletion width and Q D = Depletion charge per unit area 2ǫ si ψ s W D = qn A Q D = qn A W D = 2qN A ψ s ψ OX = (Q D +Q I ) C ox C ox = ǫ ox t ox V TH = ψ S Q D C ox Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 9/41

10 Threshold Voltage V B 0 Body effect alters depletion region charge Q D = 2qN A ǫ Si Ψ S +V SB V TH = V TH0 +γ( Ψ S +V SB (Ψ S ) ) Technolopgy parameters V TH0 - Threshold voltage without body effect γ - Body effect coefficient Ψ S - Positive (Negative) for NMOS (PMOS) transistors Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 10/41

11 NMOS Transistor B S V GS V DS I D V x L x P Figure: NMOS Transistor V GS 0 - OFF V GS > V TH and V DS < V GS V TH - Linear V GS > V TH and V DS > V GS V TH - Saturation Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 11/41

12 NMOS - ON Current - Linear Region B S V GS V DS I D V x L x P Figure: NMOS Transistor Q i (x) = C OX [V GS V x V TH ] C OX = ǫ OX t OX I D = v n Q i (x)w Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 12/41

13 NMOS - ON Current - Linear Region v n = µ n E(x) Substituting we get v n = µ n dv x dx L 0 I D dx = dv x I D = C OX [V GS V x V TH ]Wµ n dx VDS 0 I D = k n C OX [V GS V x V TH ]Wµ n dv x W L [(V GS V TH )V DS V2 DS 2 ] Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 13/41

14 NMOS - ON Current - Saturation B S V GS V DS I D V P L x P Figure: NMOS Transistor under pinch off voltage (V P ) condition I D = k n W 2 L [(V GS V TH ) 2 ] Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 14/41

15 Short Channel Effects B S V GS L V DS I D L V DS = V DD V DS = 0 P V DS << V DD Figure: NMOS Transistor with Short Channel Effects Drain is very close to the source (L is very small) The depletion regions in the drain and source are comparable to the channel length Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 15/41

16 Channel Length Modulation B S VGS L VDS ID L VDS = VDD VDS = 0 P VDS << VDD Figure: NMOS Transistor with Short Channel Effects I D = k n W 2 L L [(V GS V TH ) 2 ] I D = k n W 2 L [(V GS V TH ) 2 ](1+ L L ) I D = k n W 2 L [(V GS V TH ) 2 ](1+λV DS ) Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 16/41

17 Velocity Saturation v n = µ n E Lat Not entirely correct - Velocity does not linearly increase with lateral field for ever It saturates beyond a critical field E Crit Electrons encounter more collisions and hence don t pick up speed Maximum velocity of electrons/ holes = 10 5 m/s Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 17/41

18 Velocity Saturation 0.8 v(m/s)( 10 5 ) E(V/µm) v = µe 1+ E E C v sat if E E C if E > E C Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 18/41

19 Velocity Saturation- Simplified Velocity: VDS Saturation : v = { µe if E E C v sat = µe C if E > E C V DS SAT = L E C = Lv SAT µ Velocity Saturated Drain Current: I DS SAT = µ n C OX W L I DS SAT = I DS (V DS = V DS SAT ( ) (V GS V TH )V DS SAT V2 DS SAT 2 Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 19/41

20 Unified Current Model Useful to combine all effects into one equation Voltage values determine the governing equations { 0 VGS < V TH I DS = ( ) k W (V L GS V TH )V min V2 min )(1+λV 2 DS V GS > V TH Where V min = min(v DS,(V GS V TH ),V DS SAT )...NMOS V min = max(v DS,(V GS V TH ),V DS SAT )...PMOS V TH = V TH0 +γ( V SB +Ψ S Ψ S ) (V TH0,k,V DSAT,γ,λ) - Technology parameters Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 20/41

21 Sub-threshold Leakage B S VGS = 0 VDS IOFF Thin Base Emitter Collector P Figure: NMOS Transistor Sub-Threshold Leakage In a short channel transistor, the thin channel acts like a thin base of a BJT. Diffusion current flows even when V GS = 0. Exponential dependence on V GS I OFF = I S e V GS V TH nkt/q ( ) 1 e V DS kt/q (1+λV DS ) Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 21/41

22 Sub-threshold Slope ma I DS Log GIDL na IOFF Linear S = V GS 1 d(log 10 (I OFF )) dv GS S = n kt q ln(10) Ideal transistor n = 1, S min = 60mV/decade Actual transistors n 1.5 and hence S = 90mV/decade Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 22/41

23 Gate Induced Drain Leakage (GIDL) B S VGS << 0 VDS = VDD P+ IGIDL P Figure: NMOS Transistor with Halo Implant Negative V GS exponentially reduces sub-threshold leakage But beyond a point GIDL kicks in Surface is in deep accumulation causing a deeper depletion in the diffusion Tunneling current from drain to substrate Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 23/41

24 Drain Induced Barrier Lowering (DIBL) B S VGS VDS ID L VDS = VDD VDS = 0 P VDS << VDD Figure: NMOS Transistor DIBL Drain controls amount of depletion in the channel Easier for the gate to invert with higher V DS Gate effectively has lesser control Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 24/41

25 Drain Induced Barrier Lowering (DIBL) B S VGS VDS ID L P + P + P Figure: NMOS Transistor with Halo Implant P + halo added near diffusion Depletion layer now goes deeper into the diffusion rather than channel Gate has better control now DIBL = V TH(V DS =V H DD ) V TH(V DS =V L DD ) V H DD VL DD Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 25/41

26 Reverse Short Channel Effect RSCE VTH SCE L Halo implant makes it harder to invert the channel Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 26/41

27 Substrate Leakage B S V GS V DS I SUB LEAK P Reverse biased P junction leakage Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 27/41

28 Gate Leakage tox = 4nm B S VGS VDS Scaling P tox = 1nm B S IGATE P Quantum mechanical tunneling across the gate oxide Use of HfO 2 - HiK dielectric since 45nm technology Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 28/41

29 Capacitance D C gd C db G C gs S C sb B C gb Figure: Capacitance Model Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 29/41

30 Gate Capacitance G C C 0 Accumulation Depletion Inversion V GB B Figure: Capacitance Model C 0 = ǫwl t ox Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 30/41

31 Gate Capacitance Parameter Cutoff Linear Saturation C gb C C gs 0 C 0 /2 (2/3)C 0 C gd 0 C 0 /2 0 C g = C gb +C gs +C gd C 0 C 0 (2/3)C 0 C 0 = ǫ oxwl t ox For all practical purposes C g C 0 Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 31/41

32 Overlap Capacitance Cross Section L x d Ld W Top View Figure: Overlap Capacitance C ov = ǫ oxwx d t ox C G = C 0 +2C ov Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 32/41

33 Diffusion Capacitance W x j D D L S N A Figure: Diffusion Capacitance Bottom plate capacitance Sidewall capacitance Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 33/41

34 Diffusion Capacitance Side Wall W Side Wall N D Source Bottom x j Side Wall L S Channel Substrate N A Figure: Diffusion Capacitance Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 34/41

35 Bottom Plate Diffusion Capacitance W xj D D LS NA C j0 = C Bottom = C j WL S C j0 C j = (1+V SB /φ 0 ) m ( ǫ siq N A N D )φ N A +N D φ 0 = kt q ln(n AN D ) n 2 i m 0.5 C j is charge per unit area. Similar expressions hold for the drain side (V SB V DB ) as well. Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 35/41

36 Side wall Diffusion Capacitance W x j D D L S N A Figure: Diffusion Capacitance C Side wall = C jswx j (W +2L S ) C jsw = C jswx j C diff = C bottom +C sw = C j L S W +C jsw (W +2L S ) C jsw is capacitance per unit length. Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 36/41

37 Capacitance Summary D G C gd C gs S C db B C gb C sb Figure: NMOS Capacitance C G = C GS +C GD +C GB +2C ov = C OX WL+2C ov C DB = C j L S W +C jsw (W +2L S ) C SB = C j L S W +C jsw (W +2L S ) Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 37/41

38 Resistance V DS (V DD V DD /2) V DD I D R eq = Figure: NMOS Equivalent Resistance R eq = 1 V DD /2 V DD 1 V DD /2 VDD /2 V DD R eq 3V DD 4I DSAT VDD /2 V DD R(V)dV V I DSAT (1+λV) dv ( 1 7 ) 9 λv DD Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 38/41

39 Resistance R eq 3V DD 4I DSAT ( 1 7 ) 9 λv DD I DSAT = k W L ((V DD V TH )V DSAT V2 DSAT 2 Resistance R eq 1 W/L - Doubling W = R eq halves If V DD >> V TH +V DSAT /2, R eq is independent of V DD. Minor dependence due to CLM (λ) As V DD V TH, resistance goes up significantly ) Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 39/41

40 BSIM SPICE Level 1 Model V TH0 γ(v 0.5 ) V DSAT (V) k (µa/v 2 ) λ(v 1 ) NMOS PMOS Table: Parameters of a 0.25µm CMOS process for a minimum length device Calculate the drain current of a PMOS transistor in 0.25µm technology whose W/L = 0.5µ/0.25µ when biased at V GS = 0.6V, V DS = 0.3V and V SB = 0V Repeat the above calculation this time with V DS = 1.1V and V GS = 2V Calculate the threshold voltage of a NMOS device when the body is biased at V SB = 0.11V. Assume that ψ S = 0.25V Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 40/41

41 Capacitance Model C OX C ov C j m j φ b C jsw m jsw φ bsw (ff/µm 2 ) (ff/µm) (ff/µm 2 ) (V ff/µm) (V) NMOS PMOS Table: Capacitance parameters of a 0.25µm CMOS process Calculate variaous capacitances of an NMOS transistor with W/L = 0.36µm/0.24µm in a 0.25µm technology where L D = L S = 0.625µm under zero-bias condition Calculate the equivalent resistance of an NMOS transistor with a W/L = 1 when connected to a V DD = 1.5V Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 41/41

42 References The material presented here is based on the following books/ lecture notes 1. Digital Integrated Circuits Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic 2nd Edition, Prentice Hall India Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 42/41

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

ECE321 Electronics I

ECE321 Electronics I EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman Zarkesh-Ha Office: EE Bldg. 3B Office hours: Tuesday :-3:PM or by appointment E-mail: payman@ece.unm.edu Slide: 1

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis. June 26, 2004 oal of this chapter Chapter 2 MO Transistor Theory oonchuay upmonchai Integrated esign Application Research (IAR) Laboratory June 16th, 2004; Revised June 16th, 2005 q Present intuitive understanding

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

Lecture 11: MOSFET Modeling

Lecture 11: MOSFET Modeling Digital Integrated Circuits (83-313) Lecture 11: MOSFET ing Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Non Ideal Transistor Behavior

Non Ideal Transistor Behavior Non Ideal Transistor Behavior Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, Addison- Wesley, 3/e, 2004 1 Non-ideal Transistor I-V effects Non ideal transistor Behavior Channel Length ModulaJon

More information

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

The Intrinsic Silicon

The Intrinsic Silicon The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm-3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e -1.21/2KT cm -3 T= temperature in K o (egrees

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 2 What do digital IC designers need to know? 5 EE4 EECS4 6 3 0< V GS - V T < V DS Pinch-off 7 For (V GS V T )

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Nanometer Transistors and Their Models. Jan M. Rabaey

Nanometer Transistors and Their Models. Jan M. Rabaey Nanometer Transistors and Their Models Jan M. Rabaey Chapter Outline Nanometer transistor behavior and models Sub-threshold currents and leakage Variability Device and technology innovations Nanometer

More information

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th MOSFET Id-Vd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B MOS Device Modeling C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of Agilent eesoft 1 Overview Reading Rabaey 3.3 W&H 2.2-2.4 Overview This class will look at the iv and CV characteristics of an MOS device

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

Conduction in Semiconductors -Review

Conduction in Semiconductors -Review Conduction in Semiconductors Review Intrinsic (undoped) Semiconductors intrinsic carrier concentration n i =.45x0 0 cm 3, at room temp. n = p = n i, in intrinsic (undoped) material n number of electrons,

More information

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancement-type N-MOS transistor 5.3 I-V characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors CMOS Devices PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors PN Junctions Diffusion causes depletion region D.R. is insulator and establishes barrier

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information