Study of MOSFET circuit

Size: px
Start display at page:

Download "Study of MOSFET circuit"

Transcription

1 ECE 570 Computer Aided Engineering for Integrated Circuits IC E Simulation Assignment No. 3 - Due: Oct. 30 (Th.), 2003 Study of MOSFET circuit Simulate the basic circuit of CMOS shift register shown in Fig. 1. V DD =5 V V 2 V DD =5 V V 1 i 1 x1 x 3 x 2 i 2 Fig. 1. Basic cell of CMOS shift register. Assume the SPICE Level 1 model of the device and parameters provided in the enclosed list. Use those parameters, which are relevant for the model of Level 1. The input voltage (V 1 ) and the clock (V 2 ) are specified in Fig. 2. Plot the nodal voltages x 1, x 2, x 3 and the currents i 1, i 2 versus time. [V] V V t r t Fig. 2. Plot of input voltage (V 1 ) and clock (V 2 ) wave-forms. 1

2 Find a minimum rise time with which this circuit will function satisfactorily. You will need to use your judgment to determine satisfactory circuit performance and consequently the minimum rise time. Assume that rise and fall times in both wave-forms are identical, and that the relation between rise time and clock cycle is T clk = 10 t r. For the start assume the rise time to be 0.1[nsec]. (You may need to perform the simulations with the rise times of smaller and larger values.) Adjust the input voltage wave-form appropriately (you want to see the clock going up and down in both cases when the input is high and when the input is low) when changing the rise time. Perform a convergence test for the circuit with the determined minimum rise time. Provide a written report including the concise definition of satisfactory circuit performance. A sample file with transistor parameters (SPICE version: 3e2) Note: these parameters are for old manufacturing technology. Thes parameters can be used for regular credit (up to 100 points)..model ece570_2p PMOS level=1 +vto=-.82 kp=3.27e-5 gamma=.561 phi=.87 cbd=.91p cbs=.91p +is=1e-16 cgdo=2.02e-10 cgso=2.02e-10 mj=.5 mjsw=.5 pb=0.8 M_M1 + L=2u + W=500u + AD=5400p + AS=2500p + PD=1010u + PS=1010u $N_0003 $N_0001 $N_0002 $N_0002 ece570_2p.model ece570_2n NMOS level=1 +vto=.62 kp=9.33e-5 gamma=.641 phi=.6 cbd=.354p cbs=.354p +is=1e-16 cgdo=2.02e-10 cgso=2.02e-10 mj=.5 mjsw=.5 pb=0.8 M_M2 + L=2u + W=200u + AD=1000p + AS=1000p + PD=410u + PS=410u $N_0003 $N_ ece570_2n Extra credit: Total - 50 points a) 20 points for extracting the suitable parameters (for Level 1) from the data for advanced technology and more advanced model given on the following pages. b) 30 points for simulation with the extracted, new data and comparison of the results with the simulation obtained using the old data (old technology) given on this page. 2

3 MOSIS file tsmc-018/t1ch_mm_non_epi_thk-params.txt MOSIS PARAMETRIC TEST RESULTS RUN: T1CH (MM_NON-EPI_THK-MTL) VENDOR: TSMC TECHNOLOGY: SCN018 FEATURE SIZE: 0.18 microns INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached. COMMENTS: DSCN6M018_TSMC TRANSISTOR PARAMETERS W/L N-CHANNEL P-CHANNEL UNITS MINIMUM 0.27/0.18 Vth volts SHORT 20.0/0.18 Idss ua/um Vth volts Vpt volts WIDE 20.0/0.18 Ids pa/um LARGE 50/50 Vth volts Vjbkd volts Ijlk <50.0 <50.0 pa Gamma V^0.5 K' (UoCox/2) ua/v^2 Low-field Mobility cm^2/vs COMMENTS: Poly bias varies with design technology. To account for mask and etch bias use the appropriate value for the parameters XL and XW in your SPICE model card. Design Technology XL XW SCN6M_DEEP (lambda=0.09) thick oxide TSMC thick oxide SCN6M_SUBM (lambda=0.10) thick oxide FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS Vth Poly >6.6 <-6.6 volts 3

4 PROCESS PARAMETERS N+ACTV P+ACTV POLY N+BLK PLY+BLK MTL1 MTL2 UNITS Sheet Resistance ohms/sq Contact Resistance ohms Gate Oxide Thickness 41 angstrom PROCESS PARAMETERS MTL3 MTL4 MTL5 MTL6 N_WELL UNITS Sheet Resistance ohms/sq Contact Resistance ohms COMMENTS: BLK is silicide block. CAPACITANCE PARAMETERS N+ACTV P+ACTV POLY M1 M2 M3 M4 M5 M6 M5P N_WELL UNITS Area (substrate) Area (N+active) Area (P+active) 7971 Area (poly) Area (metal1) Area (metal2) Area (metal3) Area (metal4) Area (metal5) Area (no well) 133 Fringe (substrate) Fringe (poly) Fringe (metal1) Fringe (metal2) Fringe (metal3) Fringe (metal4) Fringe (metal5) 59 Overlap (N+active) 749 Overlap (P+active) 686 CIRCUIT PARAMETERS UNITS Inverters K Vinv volts 4

5 Vinv volts Vol (100 ua) volts Voh (100 ua) volts Vinv volts Gain Ring Oscillator Freq. D1024_THK (31-stg,3.3V) MHz DIV1024 (31-stg,1.8V) MHz Ring Oscillator Power D1024_THK (31-stg,3.3V) 0.07 uw/mhz/gate DIV1024 (31-stg,1.8V) 0.02 uw/mhz/gate COMMENTS: DEEP_SUBMICRON T1CH SPICE BSIM3 VERSION 3.1 PARAMETERS SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 DATE: Feb 15/02 LOT: T1CH WAF: 8005 Temperature_parameters=Default.MODEL tsmc018cmosn NMOS LEVEL = 7 +VERSION = 3.1 TNOM = 27 TOX = 4.1E-9 +XJ = 1E-7 NCH = E17 VTH0 = K1 = K2 = E-3 K3 = 1E-3 +K3B = W0 = E-7 NLX = E-7 +DVT0W = 0 DVT1W = 0 DVT2W = 0 +DVT0 = DVT1 = DVT2 = U0 = UA = E-9 UB = E- 18 +UC = E-11 VSAT = E5 A0 = 2 +AGS = B0 = E-9 B1 = -1E-7 +KETA = E-3 A1 = 0 A2 = RDSW = PRWG = PRWB = 0.2 +WR = 1 WINT = E-10 LINT = E-8 +DWG = E-9 +DWB = E-9 VOFF = NFACTOR = 2.5 +CIT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETA0 = 0 ETAB = DSUB = 1 PCLM = PDIBLC1 = PDIBLC2 = PDIBLCB = E-3 DROUT = PSCBE1 = E9 PSCBE2 = 5E-10 PVAG = DELTA = 0.01 RSH = 6.7 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 7.49E-10 CGSO = 7.49E-10 CGBO = 1E-12 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = MJSW = CJSWG = 3.3E-10 PBSWG = MJSWG = CF = 0 PVTH0 = E-4 PRDSW = -5 +PK2 = E-3 WKETA = E-3 LKETA = E-3 5

6 +PU0 = PUA = E-10 PUB = 0 +PVSAT = E3 PETA0 = 1E-4 PKETA = E-3.MODEL tsmc018cmosp PMOS LEVEL = 7 +VERSION = 3.1 TNOM = 27 TOX = 4.1E-9 +XJ = 1E-7 NCH = E17 VTH0 = K1 = K2 = K3 = K3B = 20 W0 = E-6 NLX = E-8 +DVT0W = 0 DVT1W = 0 DVT2W = 0 +DVT0 = DVT1 = DVT2 = 0.1 +U0 = UA = E-9 UB = E- 21 +UC = -1E-10 VSAT = E5 A0 = AGS = B0 = E-6 B1 = 5E-6 +KETA = A1 = A2 = RDSW = PRWG = 0.5 PRWB = WR = 1 WINT = E-9 LINT = E-8 +DWG = E-8 +DWB = E-8 VOFF = NFACTOR = CIT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETA0 = ETAB = DSUB = PCLM = PDIBLC1 = E-4 +PDIBLC2 = PDIBLCB = -1E-3 DROUT = 0 +PSCBE1 = E9 PSCBE2 = E-10 PVAG = DELTA = 0.01 RSH = 7.5 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 6.86E-10 CGSO = 6.86E-10 CGBO = 1E-12 +CJ = E-3 PB = MJ = CJSW = E-10 PBSW = MJSW = CJSWG = 4.22E-10 PBSWG = MJSWG = CF = 0 PVTH0 = E-3 PRDSW = PK2 = E-3 WKETA = E-3 LKETA = E- 3 +PU0 = PUA = E-11 PUB = 1E-21 +PVSAT = -50 PETA0 = 1E-4 PKETA = E-3 6

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon)

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon) EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon) Assume the CMOS process is characterized by model parameters VTH=1V and µcox=100µa/v 2. If any other model parameters

More information

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded) EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded) Assume the CMOS process is characterized by model parameters V TH =1V and µc OX =100µA/V 2. If any other model parameters

More information

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1) (S&S 4.1 4.3) NMOS: electrons flow from Source to Drain PMOS: holes flow from Source to Drain In cut-off ( v < V ), i = 0 GS t D NMOS I-V Characteristics In triode, ( v > V but v v v ) GS t DS GS T W 1

More information

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate?

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate? Page 1 of 6 EE 434 Exam 2 Fall 2004 Name Instructions: nswer the following questions and solve the following problems. In problems relating to timing or delay calculations, assume you are working in a

More information

Integrated Circuit Design: OTA in 0.5µm Technology

Integrated Circuit Design: OTA in 0.5µm Technology Integrated Circuit Design: OTA in 0.5µm Technology Omar X. Avelar, Omar de la Mora & Diego I. Romero INTEGRATED CIRCUITS DESIGN (ESI108A) Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO)

More information

num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1

num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1 ** num_1a.sp **SAM *circuit description vds 1 0 10 vgs 3 0 5 * Mosfet circuit M1 2 3 0 0 nch L=.5u w=8u R1 1 2 0 ~, Mosfet model.model nch nmos LEVEL = 1 TONS LST NODE POST.DC vds 0 10 100m vgs 0 1.PRNT

More information

APPENDIX D: Binning BSIM3v3 Parameters

APPENDIX D: Binning BSIM3v3 Parameters APPENDIX D: Binning BSIM3v3 Parameters Below is a list of all BSIM3v3 model parameters which can or cannot be binned. All model parameters which can be binned follow the following implementation: P L P

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 2 none capacitance

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 1 none capacitance

More information

APPENDIX D: Model Parameter Binning

APPENDIX D: Model Parameter Binning APPENDIX D: Model Parameter Binning Below is the information on parameter binning regarding which model parameters can or cannot be binned. All those parameters which can be binned follow this implementation:

More information

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer? EE 330 Exam 1 Spring 2017 Name Instructions: Students may bring 1 page of notes (front and back) to this exam and a calculator but the use of any device that has wireless communication capability is prohibited.

More information

Generation and classification of Kerwin Huelsman Newcomb circuits using the DVCC

Generation and classification of Kerwin Huelsman Newcomb circuits using the DVCC INTENATIONAL JOUNAL OF CICUIT THEOY AND APPLICATIONS Int. J. Circ. Theor. Appl. 2009; 37:835 855 Published online 20 June 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 0.002/cta.503 Generation

More information

2. (2pts) What is the major reason that contacts from metal to poly are not allowed on top of the gate of a transistor?

2. (2pts) What is the major reason that contacts from metal to poly are not allowed on top of the gate of a transistor? EE 330 Exam 1 Spring 2018 Name Instructions: Students may bring 1 page of notes (front and back) to this exam and a calculator but the use of any device that has wireless communication capability is prohibited.

More information

Exam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal

Exam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal EE 434 Exam 2 Fall 2006 Name Instructions. Students may bring 2 pages of notes to this exam. There are 10 questions and 5 problems. The questions are worth 2 points each and the problems are all worth

More information

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Old Content - visit altium.com/documentation Modified by Phil Loughhead on 4-Mar-2014 Model Kind Transistor Model Sub-Kind MOSFET SPICE

More information

MITLL Low-Power FDSOI CMOS Process

MITLL Low-Power FDSOI CMOS Process MITLL Low-Power FDSOI CMOS Process Device Models Revision 2006:2 (September 2006) 2006 by MIT Lincoln Laboratory. All rights reserved. This work was sponsored by the United States Air Force under Air Force

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 Lecture 4: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Agenda MOS ransistor Modeling MOS Spice Models MOS High-Order

More information

Chapter 5 g m /I D -Based Design

Chapter 5 g m /I D -Based Design Chapter 5 g m /I D -Based Design Ross Walker ECE/CS 5720/6720 Fall 2017 University of Utah Partly adapted from Stanford s analog circuit design sequence Reading: See References at the end of this chapter

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model EE115C Winter 2017 Digital Electronic Circuits Lecture 2: MOS Transistor: IV Model Levels of Modeling Analytical CAD analytical Switch-level sim Transistor-level sim complexity Different complexity, accuracy,

More information

Stochastic Simulation Tool for VLSI

Stochastic Simulation Tool for VLSI Stochastic Simulation Tool for VLSI Mid-Project Report, Fall 2016 -Full Report- By Luis E. Martinez Sergio Graniello Department of Electrical and Computer Engineering Colorado State University Fort Collins,

More information

USC-ISI. The MOSIS Service. BSIM3v3.1 Model. Parameters Extraction and Optimization. October 2000

USC-ISI. The MOSIS Service. BSIM3v3.1 Model. Parameters Extraction and Optimization. October 2000 USC-ISI The MOSIS Service BSIM3v3.1 Model Parameters Extraction and Optimization October 000 Henok Abebe ance C.Tyree Table of Contents 1. Introduction and Motivation: -----------------------------------------------1.

More information

CHAPTER 3 - CMOS MODELS

CHAPTER 3 - CMOS MODELS Lecture 04 Chapter 3 Introduction (4/15/02) Page 3.0-1 CHAPTER 3 - CMOS MODELS Chapter Outline 3.1 MOS Structure and Operation 3.2 Large signal MOS models suitable for hand calculations 3.3 Extensions

More information

Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage:

Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

MOS Amplifiers Dr. Lynn Fuller Webpage:

MOS Amplifiers Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage:

Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Combinatorial and Sequential CMOS Circuits Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors

More information

Reference. [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa,

Reference. [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa, Reference [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa, The Evolution of Power Device Technology, IEEE Trans. Electron Devices, vol. ED-31, NO. 11, November 1984 [2] B. J.

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

UNIVERSITY OF SOUTHERN CALIFORNIA. FALL EE Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder

UNIVERSITY OF SOUTHERN CALIFORNIA. FALL EE Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder UNIVERSITY OF SOUTHERN CALIFORNIA. FALL 2015. 20153 EE 277 31099 1 Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder Comparing Propagation Delays and Power Dissipation on CMOS-simulated

More information

High Speed Logic Circuits Dr. Lynn Fuller Webpage:

High Speed Logic Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Circuits Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email:

More information

ESE 570 MOS TRANSISTOR THEORY Part 2

ESE 570 MOS TRANSISTOR THEORY Part 2 ESE 570 MOS TRANSISTOR THEORY Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation CMOS = NMOS + PMOS 2 TwoTerminal MOS Capacitor > nmos Transistor VGS

More information

Chapter 5: BSIM3v3 Characterization

Chapter 5: BSIM3v3 Characterization 5: BSIM3v3 Characterization The BSIM3 model (BSIM = Berkeley Short channel Insulated gate field effect transistor Model) was published by the University of California at Berkeley in July 1993. BSIM3 is

More information

LEVEL 61 RPI a-si TFT Model

LEVEL 61 RPI a-si TFT Model LEVEL 61 RPI a-si TFT Model Star-Hspice LEVEL 61 is an AIM-SPICE MOS15 amorphous silicon (a-si) thin-film transistor (TFT) model. Model Features AIM-SPICE MOS15 a-si TFT model features include: Modified

More information

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage:

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

Lab 1 Getting Started with EDA Tools

Lab 1 Getting Started with EDA Tools Lab Getting Started with EDA Tools E3-238: Analog LSI Circuits INTRODUCTION The objective of this lab is to familiarize you with the Cadence irtuoso design environment. The irtuoso environment provides

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices 412 PAPER Special Section of Selected Papers from the 12th Workshop on Circuits and Systems in Karuizawa Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices Takao MYONO, Member,

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii MOS-AK //03 Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain Sadayuki Yoshitomi, Fumie Fujii Semiconductor & Storage Products Company Toshiba Corporation Copyright 03,

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Technology file available in the CD-Rom length. Table 1-xxx: correspondence between technology and the value of lambda in µm

Technology file available in the CD-Rom length. Table 1-xxx: correspondence between technology and the value of lambda in µm A Design Rules This section gives information about the design rules used by Microwind2. You will find all the design rule values common to all CMOS processes. All that rules, as well as process parameters

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

EE382M-14 CMOS Analog Integrated Circuit Design

EE382M-14 CMOS Analog Integrated Circuit Design EE382M-14 CMOS Analog Integrated Circuit Design Lecture 3, MOS Capacitances, Passive Components, and Layout of Analog Integrated Circuits MOS Capacitances Type of MOS transistor capacitors Depletion capacitance

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

BSIM4v4.7 MOSFET Model

BSIM4v4.7 MOSFET Model BSIM4v4.7 MOSFET Model -User s Manual Tanvir Hasan Morshed, Darsen D. Lu, Wenwei (Morgan) Yang, Mohan V. Dunga, Xuemei (Jane) Xi, Jin He, Weidong Liu, Kanyu, M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan,

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 08 MOS Inverters - III Hello, and welcome to today

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences PROBLEM SET #3 (SOLUTION)

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences PROBLEM SET #3 (SOLUTION) UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences R. W. Brodersen EECS 140 Fall 2004 PROBLEM SET #3 (SOLUTION) 3) In the above circuit, use V DD

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow EE 330 Lecture 18 Small-signal Model (very preliminary) Bulk CMOS Process Flow Review from Last Lecture How many models of the MOSFET do we have? Switch-level model (2) Square-law model Square-law model

More information

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow EE 330 Lecture 17 MOSFET Modeling CMOS Process Flow Review from Last Lecture Limitations of Existing Models V DD V OUT V OUT V DD?? V IN V OUT V IN V IN V DD Switch-Level Models V DD Simple square-law

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999 UNIVERSITY OF CLIFORNI College of Engineering Department of Electrical Engineering and Computer Sciences Professor Oldham Fall 1999 EECS 40 FINL EXM 13 December 1999 Name: Last, First Student ID: T: Kusuma

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

EKV MOS Transistor Modelling & RF Application

EKV MOS Transistor Modelling & RF Application HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

BSIM4.6.4 MOSFET Model

BSIM4.6.4 MOSFET Model BSIM4.6.4 MOSFET Model -User s Manual Tanvir Hasan Morshed, Wenwei (Morgan) Yang, Mohan V. Dunga, Xuemei (Jane) Xi, Jin He, Weidong Liu, Kanyu, M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan, Ali M. Niknejad,

More information

The simulated two volt performance of CMOS circuits with submicron transistors

The simulated two volt performance of CMOS circuits with submicron transistors Lehigh University Lehigh Preserve Theses and Dissertations 1992 The simulated two volt performance of CMOS circuits with submicron transistors Christopher John Younger Lehigh University Follow this and

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2012

ECEN474: (Analog) VLSI Circuit Design Fall 2012 ECEN474: (Analog) VLSI Circuit Design Fall 2012 Lecture 5: Layout Techniques Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements HW1 due today at 5PM For grad students, confirm

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides

More information

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16] Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory. Contents

PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory. Contents PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory Contents Experiment No Name of The Experiments. Page Experiment-1 INTRODUCTION TO CIRCUIT SIMULATION

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 7 Interconnections 1: wire resistance, capacitance,

More information

Mixed Type Simulation Guide

Mixed Type Simulation Guide Mixed Type Simulation Guide Gong Ding University of Science and Technology of China Email: gdiso@ustc.edu July 19, 2007 Contents 1 Introduction 2 2 Equations for Circuit Simulation 3 3 Build Conductance

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2010

ECEN474: (Analog) VLSI Circuit Design Fall 2010 ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 6: Layout Techniques Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Lab 2 next week Has a prelab Upgrading Cadence version

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

BSIM4.6.0 MOSFET Model

BSIM4.6.0 MOSFET Model BSIM4.6.0 MOSFET Model - User s Manual Mohan. Dunga, Xuemei (Jane) Xi, Jin He, Weidong Liu, Kanyu M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan, Ali M. Niknejad, Chenming Hu Department of Electrical Engineering

More information

The Intrinsic Silicon

The Intrinsic Silicon The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm-3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e -1.21/2KT cm -3 T= temperature in K o (egrees

More information

CHAPTER 3 - CMOS MODELS

CHAPTER 3 - CMOS MODELS CMOS Analog Circuit Design Page 3.-1 CHAPTER 3 - CMOS MODELS Chapter Outline 3.1 MOS Structure and Operation 3.2 Large signal MOS models suitable for hand calculations 3.3 Extensions of the large signal

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information