Answers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017


 Lee Kennedy
 3 years ago
 Views:
Transcription
1 University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2017 Midterm 2 Monday, November 6 Point values for each problem are denoted in exam. Point breakdown within problems varies. Calculators allowed. No smartphones. Closed book = No text or notes allowed. V dd =1V, V thn = V thp = 250mV, µ n = µ p, R p0 = R n0 = R 0, unless otherwise specified in problem. Unless otherwise noted, inputs driven by R 0 drive with self load 2γC model_drive 1 1 A model for the input driver is: Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14 Answers 1
2 1. (10 points) Draw a ratioed gate for the function Z = A B + B C. Draw a stick drawing of the layout of your gate. Assume all transistors are minimum sized. For reference, an example of a layout stick drawing for a CMOS inverter is shown below. An represents a contact or via and the dashed line defines the nwell area. 2
3 (You may continue problem 1 on this almost blank page.) (This page intentionally left almost blank for pagination.) 3
4 2. (40 points) Size the transistors in the following circuit to minimize switching energy while achieving 30τ worstcase delay. Report final delay and switching energy. Assume γ=0, V dd =1V, V thn = V thp = 300mV, C 0 = F, and velocity saturated operation. Basic cell: Circuit from basic cell (Calculate delay from initial inverters driving circuit to circuit driving final output inverters): 4
5 (a) What is the delay if all of the transistors have W = 1? Delay 42 τ 10pts The critical path goes from the inputs through A(orB).Pin A.nand2 A.inv.Pout C.nand2 C.nand3 C.inv.Gout. Stage Delay A(orB).Pin R 0 2C 0 = 2τ A.nand2 2R 0 4C 0 = 8τ A.inv.Pout drive C.Pin R 0 2C 0 = 2τ C.nand2 2R 0 4C 0 = 8τ C.nand3 3R 0 2C 0 = 6τ C.inv.Gout drive W=8 R 0 16C 0 = 16τ 5
6 (b) Size design to achieve the 30τ target while minimizing switching energy: Cell Instance transistor A B C WP WP WP WP WP WP WP WN WN WN WN WN WN WN (c) Delay for sized design: Delay 30τ Stage Delay A(orB).Pin R 0 4C 0 = 4τ A.nand2 R 0 6C 0 = 6τ A.inv.Pout drive C.Pin R 0 /2 4C 0 = 2τ C.nand2 R 0 6C 0 = 6τ C.nand3 R 0 4C 0 = 4τ C.inv.Gout drive W=8 R 0 /2 16C 0 = 8τ 6
7 (d) Switching Energy for all 0 s input switches to all 1 s input: Switching Energy 98 2 C 0(V dd ) J For this switching case, all transistor gates switch values with the load. 7
8 3. (30pts) A useful circuit in an analogtodigital (ADC) converter is a thermometer to binary encoder. The truth table and logic function for a 2bit ADC are given below, where the 3bit thermometer code T 3 T 2 T 1 is encoded to a 2bit binary output B 2 B 1. You can assume only the inputs included in the truth table are possible. All transistors W=L=1. Inputs Outputs T 3 T 2 T 1 B 2 B Give answers in terms of τ and γ; γ = C diff /C gate. Assume all inputs arrive at the same time and are driven by R 0 drive with 2γC 0 self load. The load on each of the outputs is 4C 0. The 2input multiplexer used in this problem is given as: 8
9 (a) Estimate the delay of for a simple implementation of the encoder for a 2bit ADC using the 2input pass transistor multiplexer given above. Delay for design: Delay ( γ)τ Stage Delay Drive S input (7 + 2γ)τ S inv (1 + 2γ)τ drive inv input 2(2 + 2γ)τ Drive B0 (4 + 2γ)τ 9
10 This can be extended to build an encoder for a 4bit ADC, where the 15bit thermometer code T 15 T 14...T 2 T 1 is encoded to a 4bit binary output B 4 B 3 B 2 B 1. The abbreviated truth table is given here for completeness. You can assume only the inputs included in the truth table are possible. Inputs Outputs T 15 T 14 T T 3 T 2 T 1 B 4 B 3 B 2 B (b) Estimate the delay of for the below implementation of the encoder for a 4bit ADC using the 2input pass transistor multiplexer given above. 10
11 Delay for design: Delay ( γ)τ Stage Delay Drive B4 (2γ )τ T4 to preb3 (2γ + 1)τ + (4γ + 4)τ Drive B3 (2γ )τ stage1 out to preb2 (2γ + 1)τ + (4γ + 4)τ Drive B2 (2γ )τ stage2 out to preb1 (2γ + 1)τ + (4γ + 4)τ Drive B1 (2γ + 4)τ 11
12 4. (20 pts) Short Answer Questions: Answer the questions briefly. Include diagrams and equations as needed. Be clear in your explanation and handwriting. A What is leakage energy of a CMOS gate? Describe one way to reduce the leakage energy of a CMOS gate. Leakage energy of a CMOS gate is when the gate is in steady state and only one PU or PD network is active at a time. The network that is off is operating in the subthreshold region. One way to reduce the leakage energy is to use gates with a higher threshold voltage, thereby decreasing the subthreshold current for the gates that are off. B What effect does increasing V dd have on delay? Explain your answer. Increasing V DD increases the drive current of the transistors thereby decreasing the delay. τ = CV τ CV τ C I V 2 V C What is an example of a layout Design Rule? Why are the rules necessary? Some design rules are minimum widths, spacings, and overlaps of layers. Also contact and via size rules. The rules are necessary to ensure functional operation of our devices and avoiding accidental shorts or opens in our design. 12
13 D What is the activity factor of an output? How does it affect energy consumption? The activity factor is the probability of a 0 1 transistion of an output. The activity factor effects switching energy: P dyn = a(c + C SC )V 2 f. E What is the Elmore delay of the special ladder case with N unit wire segments where each segment has R unit and C unit equivalent resistance and capacitance respectively? Draw a picture to explain your calculation. The Elmore delay of the special ladder case is N(N+1) R 2 unit C unit. For N large, N 2 R 2 unitc unit. 13
Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values
More informationName: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.
More informationCARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002
CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationName: Answers. Mean: 38, Standard Deviation: 15. ESE370 Fall 2012
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2012 Final Friday, December 14 Problem weightings
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: TwoInput NOR Gate (NOR2)
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!
More informationUniversity of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences
University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS151/251A V. Stojanovic, J. Wawrzynek Fall 2015 10/13/15 Midterm Exam Name: ID
More informationEECS 312: Digital Integrated Circuits Midterm Exam Solutions 12 March 2009
Signature: EECS 312: igital Integrated Circuits Midterm Exam Solutions 12 March 2009 Robert ick Show your work. erivations are required for credit; end results are insufficient. Closed book. No electronic
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationVery Large Scale Integration (VLSI)
Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. MadianVLSI Contents Delay estimation Simple RC model PenfieldRubenstein Model Logical effort Delay
More informationTopics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut
Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.
ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design
More informationDesigning Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.
EECS 16 Designing Information Devices and Systems II Fall 017 Miki Lustig and Michel Maharbiz Homework 1 This homework is due September 5, 017, at 11:59M. 1. Fundamental Theorem of Solutions to Differential
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationEECS 151/251A Homework 5
EECS 151/251A Homework 5 Due Monday, March 5 th, 2018 Problem 1: Timing The datapath shown below is used in a simple processor. clk rd1 rd2 0 wr regfile 1 0 ALU REG 1 The elements used in the design have
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationInterconnect (2) Buffering Techniques. Logical Effort
Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The checkoff is due today (by 9:30PM) Students
More informationAnnouncements. EE141 Spring 2003 Lecture 8. Power Inverter Chain
 Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :303pm at BWRC (in lieu of Tuesday) Today s lecture Power
More information7. Combinational Circuits
7. Combinational Circuits Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 25, 2017 ECE Department, University of Texas
More informationEE115C Digital Electronic Circuits Homework #6
Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationCMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits
Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by
More informationPractice 7: CMOS Capacitance
Practice 7: CMOS Capacitance Digital Electronic Circuits Semester A 2012 MOSFET Capacitances MOSFET Capacitance Components 3 Gate to Channel Capacitance In general, the gate capacitance is similar to a
More informationEECS 141: SPRING 09 MIDTERM 2
University of California College of Engineering Department of Electrical Engineering and Computer Sciences J. Rabaey WeFr 23:30pm We, April 22, 2:003:30pm EECS 141: SPRING 09 MIDTERM 2 NAME Last First
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences nalysis and Design of Digital Integrated Circuits (6.374)  Fall 2003 Quiz #1 Prof. nantha Chandrakasan Student
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization
More informationMM74C150 MM82C19 16Line to 1Line Multiplexer 3STATE 16Line to 1Line Multiplexer
MM74C150 MM82C19 16Line to 1Line Multiplexer 3STATE 16Line to 1Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4bit address code determines
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationEECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010
Signature: EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 obert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationLast Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8
EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationLecture 7: Logic design. Combinational logic circuits
/24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model
ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationWhere Does Power Go in CMOS?
Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM
More informationDynamic operation 20
Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69
More information! Delay when A=1, B=0? ! CMOS Gates. " Dual pulldown and pullup networks, only one enabled at a time
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Pass Transistor XOR Delay when A, B0? Start with equivalent RC circuit Lec : October 9, 08 Driving Large Capacitive Loads 3
More informationNyquistRate D/A Converters. D/A Converter Basics.
NyquistRate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationCSE140L: Components and Design Techniques for Digital Systems Lab. Power Consumption in Digital Circuits. Pietro Mercati
CSE140L: Components and Design Techniques for Digital Systems Lab Power Consumption in Digital Circuits Pietro Mercati 1 About the final Friday 09/02 at 11.30am in WLH2204 ~2hrs exam including (but not
More information! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 3, 8 Memory: Core Cells Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery Penn ESE 57 Spring 8  Khanna
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationL ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling
L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation
More information3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti
Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +
More informationEECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010
Signature: EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental
More informationLecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:308:00pm in 105 Northgate
EE4Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:308:00pm in 05 Northgate Exam is
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationExam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal
EE 434 Exam 2 Fall 2006 Name Instructions. Students may bring 2 pages of notes to this exam. There are 10 questions and 5 problems. The questions are worth 2 points each and the problems are all worth
More informationDigital Integrated Circuits EECS 312. Review. Dependence of delay on width (R) Lab 3. Intuition. Inverter chain delay optimization
14 1 10 8 6 IBM ES9000 Bipolar Fujitsu VP000 IBM 3090S Pulsar 4 IBM 3090 IBM Y6 CDC Cyber 05 IBM 4381 IBM Y4 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium IIDSIP) 0 1950 1960
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More information14:332:231 DIGITAL LOGIC DESIGN. Organizational Matters (1)
4:332:23 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 23 Organizational Matters () Instructor: Ivan MARSIC Office: CoRE Building, room 7 Email: marsic@ece.rutgers.edu
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationIntroduction to Computer Engineering ECE 203
Introduction to Computer Engineering ECE 203 Northwestern University Department of Electrical Engineering and Computer Science Teacher: Robert Dick Office: L477 Tech Email: dickrp@ece.northwestern.edu
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationECE 342 Electronic Circuits. Lecture 34 CMOS Logic
ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic  Generalization ABC... ABC...
More informationDigital EE141 Integrated Circuits 2nd Combinational Circuits
Digital Integrated Circuits Designing i Combinational Logic Circuits 1 Combinational vs. Sequential Logic 2 Static CMOS Circuit t every point in time (except during the switching transients) each gate
More informationEE371  Advanced VLSI Circuit Design
EE371  Advanced VLSI Circuit Design Midterm Examination May 1999 Name: No. Points Score 1. 20 2. 24 3. 26 4. 20 TOTAL / 90 In recognition of and in the spirit of the Stanford University Honor Code, I
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationAE74 VLSI DESIGN JUN 2015
Q.2 a. Write down the different levels of integration of IC industry. (4) b. With neat sketch explain briefly PMOS & NMOS enhancement mode transistor. NMOS enhancement mode transistor: This transistor
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationLecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD
More informationCprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Code Converters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW
More informationCMOS Inverter. Performance Scaling
Announcements Exam #2 regrade requests due today. Homework #8 due today. Final Exam: Th June 12, 8:30 10:20am, CMU 120 (extension to 11:20am requested). Grades available for viewing via Catalyst. CMOS
More informationEE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates)
EE 330 Lecture 37 Digital Circuits Other Logic Families Static Power Dissipation Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates) Review from Last Time Inverter
More informationDelay and Power Estimation
EEN454 Digital Integrated ircuit Design Delay and Power Estimation EEN 454 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But make it easier to ask What
More informationEE115C Digital Electronic Circuits Homework #5
EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationStatic CMOS Circuits. Example 1
Static CMOS Circuits Conventional (ratioless) static CMOS Covered so far Ratioed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,
More information