Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.


 Ruth Carter
 2 years ago
 Views:
Transcription
1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: Lecture Outline! Pass Transistor Logic! Euler Path for Layout! Energy and Power Basics! Energy and Power Optimization Pass Transistor Logic 3 Output! What is Vout if A=0, B=0? if A=1, B=0? Restore Output A B Y
2 Chain Together Analyze Stage 7 8 Delay A=1, B=1, C diff 0? (W=1) Delay A=1, B=1, C diff 0? (W=1)! What s the equivalent RC circuit? 9 10 Transmission Gates CMOS Transmission Gates 12 2
3 CMOS Transmission Gates CMOS Transmission Gates Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V DD Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V DD 13  V Tp 14 CMOS Transmission Gates CMOS Transmission Gates Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V DD Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V DD  V Tp 15  V Tp 16 CMOS Transmission Gates Transmission Gate, R eq k p ( V DD  V Tp ) 2 k p [2( V DD  V tp ) (V out V DD )  (V out V DD ) 2 ] k p [2( V DD  V tp )  (V out V DD )]  V Tp 17 k p [2( V DD  V tp )  (V out V DD )] 18 3
4 Transmission Gate, R eq Transmission Gate, R eq Transmission Gate Layouts Performance Design 21 NOR2 Layout NAND2 Layout
5 Layout of Complex CMOS Gate Layout of Complex CMOS Gate S DDS GND Layout of Complex CMOS Gate Minimize Number of Diffusion Paths diffusion breaks d d d. d d i.e. n, p Euler paths with identical sequences of inputs Minimize Number of Diffusion Paths Minimize Number of Diffusion Paths
6 Minimize Number of Diffusion Paths Gate Layout Algorithm! 1. Find all Euler paths that cover the graph! 2. Find common n and p Euler paths! 3. If no common n and p Euler paths are found in step 2, partition the gate n and p graphs into the minimum number of subgraphs that will result in separate common n and p Euler paths Digital Logic: Gate Level Review Motivation, Abstraction, and Design Tradeoffs! We care about design for performance " Functionality (e.g. F = A + B*C) " Speed " Each gate has a delay caused by the output resistance and capacitive load (which is the input capacitive load of the gate on the output) " Critical path defines delay " Power " Switching power (comprised of dynamic and short circuit power) and static power (I.e P tot =P dyn +P SC + P stat ) " Area " For a gate the standard cell area, dependent on W and L of transistors 34 Digital Logic: Transistor Level Digital Logic: Transistor Level! We care about design for performance " Functionality (e.g. F = A + B*C) " Design for abstraction (VTC: switching voltage, high gain, noise margins) " Speed " Transistor sizing affects the output resistance and capacitance " Power " Switching power (comprised of dynamic and short circuit power) and static power (I.e P tot =P dyn +P SC + P stat ). Transistor sizing affects drive current and impacts power consumption " Area " For a gate the standard cell area, dependent on W and L of transistors
7 Review: MOS Inverter Dynamic Performance Review: nmos IV Characteristics! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 1. Average Current Model ΔV HL V τ PHL C load = C OH V 50% load I avg,hl I avg,hl 2. Differential Equation Model dv i C = C out dv load dt = C load out dt dt τ PHL or τ PLH 3. 1 st Order RC delay Model τ PHL 0.69 C load R n i C Assume V in ideal 2! V! W $ GS V th $ # &!! V DS $ # " nkt /q % I S # &e 1 e & $ 4 " kt /q % 4 " L % # &( 1+ λv DS ) 4 " % V GS V Tn Subthreshold 4 µ n C ox W 4 ( I D = 2 L 2( V V (V ) GS Tn SB DS DS )(1+ λ V DS ) 3 V GS > V Tn,V DS < V GS Linear 4 µ n C ox W 4 2 L V V (V ) GS Tn SB (1+ λ V DS ) 4 V GS > V Tn,V DS V GS V Tn Saturation 4, v sat C OX W ( V GS V th ) V / dsat E y > E cn (short channel) Velocity Saturation nmos 1st Order RC Delay Model Equiv. R n κ n C d Energy and Power Basics R n = R un /κ n κ n κ n C g ON/ OFF Where W n = κ n W un κ n 1, usually κ n = 1 κ n C d s κ p C d R p = R up /κ p Where W p = κ p W up κ p κ p C g ON/ OFF κ p 1, usually κ p µ n /µ p d κ p C d 39 Today Power! Power Sources " Static power " Dynamic switching power " Short circuit power! P = I V! Tricky part: " Understanding I " (pairing with correct V)
8 Operating Modes Understanding Currents! SteadyState: What modes are the transistors in? " V in =V dd Static Power " V in =Gnd! What current flows in steady state? Operating Modes Operating Modes! SteadyState: V in =V dd " PMOS: subthreshold! SteadyState: V in =V dd " PMOS: subthreshold " NMOS: resistive " NMOS: resistive $ I DSp = I S # W ' & ) e & % % L ( $ V GS V T nkt / q ' $ $ V DS '' ) & ) ( 1 e % kt / q ( & ) 1 λv DS % ( ( )! W $ ( I DSn = µ n C OX # & ( V GS V T )V DS V 2 + DS *  " L %) 2, Operating Modes Operating Modes! SteadyState: V in =V dd " PMOS: subthreshold! SteadyState: V in =V dd " PMOS: subthreshold " NMOS: resistive $ I DSp = I S # W ' & ) e & % % L ( $ V GS V T nkt / q ' $ $ V DS '' ) & ) ( 1 e % kt / q ( & ) 1 λv DS % ( ( ) " NMOS: resistive $ I DSp = I S # W ' & ) e & % % L ( $ V GS V T nkt / q ' $ $ V DS '' ) & ) ( 1 e % kt / q ( & ) 1 λv DS % ( ( )! W $ ( I DSn = µ n C OX # & ( V GS V T )V DS V 2 + DS *  " L %) 2,! W $ ( I DSn = µ n C OX # & ( V GS V T )V DS V 2 + DS *  " L %) 2, Which current determines I static? Which current determines I static?
9 Static Power! P = I V! What V should we use? Understanding Currents " Where is the static current flowing? Dynamic Switching Currents Power: During Switching Power: During Switching! P = IV! P = IV! Input switch: 1#0! Where does I go?! Input switch: 1#0! Where does I go? " V in =Gnd " V in =Gnd Power: During Switching Power: During Switching! P = IV! Input switch: 1#0! Where does I go? " V in =Gnd (Saturation/Linear)! P = IV! Input switch 0#1! Where does I go? " V in =V dd Subtheshold Leakage
10 Power: During Switching! P = IV! Input switch 0#1! Where does I go? " V in =V dd Power: During Switching! P = IV! Input switch 0#1! Where does I go? " V in =V dd Subtheshold Leakage (Saturation/Linear) Switching Currents! Dynamic current flow: Understanding Currents Short Circuit Currents Power: During Switching Power: During Switching! P = IV! Where does I go? " V in =V dd /2 " And V dd >V thn + V thp! P = IV! Where does I go? " V in =V dd /2 " And V dd >V thn + V thp Saturation CMOS Inverter DC Transfer Vout Vin Saturation
11 Switching Currents! Dynamic current flow: Currents Summary! I changes over time! At least two components " I static no switching " I switch when switching " and I sc! If both transistor on: " Current path from V dd to Gnd " Short circuit current Switching Currents Switching! I total (t) = I static (t)+i switch (t) Dynamic Power! I switch (t) = I sc (t) + (t) I static I sc 63 Penn ESE 570 Spring Khanna 64 Charging Switching Energy focus on (t)! (t) why changing? " I ds = f(v ds,v gs ) " and V gs, V ds changing % I DS ν sat C OX W V GS V T V ( DSAT ' * & 2 ) " W %) I DS = µ n C OX $ ' ( V # L & GS V T )V DS V 2, DS +. * 2  I sc I static
12 Switching Energy focus on (t) Switching Energy! Do we know what this is? (t)dt E = P(t)dt = I(t)V dd dt = V dd I(t)dt E = P(t)dt = I(t)V dd dt = V dd I(t)dt Switching Energy Switching Energy! Do we know what this is?! Do we know what this is? Q = (t)dt Q = (t)dt! What is Q? E = P(t)dt = I(t)V dd dt = V dd I(t)dt E = P(t)dt = I(t)V dd dt = V dd I(t)dt Switching Energy Switching Energy! Do we know what this is?! Do we know what this is? Q = (t)dt Q = (t)dt! What is Q? E = P(t)dt = I(t)V dd dt = V dd I(t)dt Q = CV = I(t)dt! What is Q? E = P(t)dt = I(t)V dd dt = V dd I(t)dt Q = CV = E = CV dd 2 I(t)dt Capacitor charging energy
13 Switching Power! Every time output switches 0#1 pay: " E = CV 2 Switching! P dyn = (# 0#1 trans) CV 2 / time Short Circuit Power! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½CV 2 / time Short Circuit Power Short Circuit Power! Between V TN and V dd  V TP " Both N and P devices conducting! Between V TN and V dd  V TP " Both N and P devices conducting! Roughly: I sc Vin VddVthp Vthn Vdd time Vdd Isc Penn ESE 570 Spring Khanna 75 Vout tsc tsc time 76 Peak Current Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall % I DS ν sat C OX W V GS V T V ( DSAT ' * & 2 )! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall % I DS ν sat C OX W V GS V T V ( DSAT ' * & 2 ) I(t)dt I t % ' 1( peak sc & 2 * ) Vin VddVthp Vthn Vdd Vin VddVthp Vthn Vdd time time Vdd Isc Vdd Isc Vout tsc tsc time 77 Vout tsc tsc time 78 13
14 Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall % I DS ν sat C OX W V GS V T V ( DSAT ' * & 2 ) I(t)dt I t % ' 1( peak sc 2 * & ) # E = V dd I peak t sc % 1& ( Vin $ 2' Vdd VddVthp Vthn time Vdd Isc Short Circuit Energy! Make it look like a capacitance, C SC " Q=I t " Q=CV " " E = V dd I peak t sc 1 %% $ $ '' # # 2 && E = V dd Q SC E = V dd (C SC V dd ) = C SC V 2 dd Vout tsc tsc time 79 Penn ESE 570 Spring Khanna 80 Short Circuit Energy! Every time switch " Also dissipate shortcircuit energy: E = CV 2 " Different C = C sc " C cs fake capacitance (for accounting) Switching Power! Every time output switches 0#1 pay: " E = CV 2! P dyn = (# 0#1 trans) CV 2 / time! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½CV 2 / time Penn ESE 570 Spring Khanna Charging Power Switching Power! P dyn = (# trans) ½CV 2 / time! Often like to think about switching frequency! Useful to consider per clock cycle " Frequency f = 1/clockperiod! P dyn = (#trans/clock) ½CV 2 f! P dyn = (#trans/clock) ½CV 2 f! Let a = activity factor a = average #tran/clock! P dyn = a½cv 2 f! P sc = ac sc V 2 f
15 Switching Power! P dyn = (#0#1 trans/clock) CV 2 f! Let a = activity factor a = average #tran 0#1 /clock! P dyn = acv 2 f! P sc = ac sc V 2 f Activity Factor! Let a = activity factor " a = average #tran 0#1 /clock a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N Penn ESE 570 Spring Khanna 85 Penn ESE 570 Spring Khanna 86 Reduce Dynamic Power? Reduce Activity Factor! P dyn = acv 2 f Tree Chain! How do we reduce dynamic power? A B C D O 1 O 2 F A B C O 1 D O 2 F a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N Penn ESE 570 Spring Khanna 87 Penn ESE 570 Spring Khanna 88 Reduce Activity Factor Reduce Activity Factor Tree Chain Tree Chain A B C D O 1 O 2 F A B C 3/16 O 1 a = p(out i = 0)p(out i+1 =1) D 7/64 O 2 15/256 F A B C D 3/16 O 1 O 2 3/16 15/256 F A B C 3/16 O 1 a = p(out i = 0)p(out i+1 =1) D 7/64 O 2 15/256 F a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N Penn ESE 570 Spring Khanna 89 Penn ESE 570 Spring Khanna 90 15
16 Total Power! P tot = P static + P sc + P dyn Energy and Power Optimization! P sw = P dyn + P sc = a(c load V 2 f) + C sc V 2 f! P tot a(c load V 2 f) + C sc V 2 f + VI s(w/l)e Vt/(nkT/q)! Let a = activity factor a = average #tran 0#1 /clock 91 Worksheet Problem 1 Power Sources Review: P tot = P static + P dyn + P sc V in I static amic I sc 0V 140mV 400mV 500mV 600mV 860mV 1V 94 Worksheet Problem 1 Idea! CMOS V in I static amic I sc " Design for worst case input switching case and delay 0V 180pA 126uA! There are other logic disciplines 140mV 6nA 100uA " Ratioed logic 400mV 36uA 18uA 500mV 36uA 600mV 36uA 18uA " Can use pass transistors for logic " Transmission gates " Will see in use in dynamic logic! Gate layout optimization 860mV 6nA 100uA " Euler Paths 1V 180pA 126uA! Power Basics Review
17 Admin! HW 6 " Out now " Due Tuesday 3/28 Penn ESE 570 Spring Khanna 97 17
ESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.
ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler
More information! Energy Optimization. ! Design Space Exploration. " Example. ! P tot P static + P dyn + P sc. ! SteadyState: V in =V dd. " PMOS: subthreshold
ESE 570: igital Integrated ircuits and VLSI undamentals Lec 17: March 26, 2019 Energy Optimization & esign Space Exploration Lecture Outline! Energy Optimization! esign Space Exploration " Example 3 Energy
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 16, 2016 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC
ESE 570: Digital Integrated Circuits and LSI Fundamentals Lec 0: February 4, 207 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic Characteristics
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization
More information! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:
ESE 570: Digital Integrated ircuits and LSI Fundamentals Lecture Outline! Inverter Power! Dynamic haracteristics Lec 10: February 15, 2018 MOS Inverter: Dynamic haracteristics " Delay 3 Power Inverter
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: TwoInput NOR Gate (NOR2)
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 016 MOS Inverter: Static Characteristics Lecture Outline! Voltage Transfer Characteristic (VTC) " Static Discipline Noise Margins!
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationLecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:308:00pm in 105 Northgate
EE4Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:308:00pm in 05 Northgate Exam is
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!
More informationDigital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman
Digital Microelectronic Circuits (3611301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationName: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationEE115C Digital Electronic Circuits Homework #3
Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More information! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " DLatch " Timing Constraints! Dynamic Logic " Domino
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More informationDynamic operation 20
Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationLecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD
More informationThe Physical Structure (NMOS)
The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two
More informationHightoLow Propagation Delay t PHL
HightoLow Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (nchannel) immediately switches from cutoff to saturation; the pchannel pullup switches from triode to
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationLecture 12 CMOS Delay & Transient Response
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology
More informationLecture 7 Circuit Delay, Area and Power
Lecture 7 Circuit Delay, Area and Power lecture notes from S. Mitra Intro VLSI System course (EE271) Introduction to VLSI Systems 1 Circuits and Delay Introduction to VLSI Systems 2 Power, Delay and Area:
More informationLecture 13  Digital Circuits (II) MOS Inverter Circuits. March 20, 2003
6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationVLSI Design and Simulation
VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter FirstOrder DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationLecture 12 Circuits numériques (II)
Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationLecture 14  Digital Circuits (III) CMOS. April 1, 2003
6.12  Microelectronic Devices and Circuits  Spring 23 Lecture 141 Lecture 14  Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:
More informationChapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter
Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationCMOS Technology for Computer Architects
CMOS Technology for Computer Architects Recap Technology Trends Lecture 2: Transistor Inverter Iakovos Mavroidis Giorgos Passas Manolis Katevenis FORTHICS (University of Crete) 1 2 Recap Threshold Voltage
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationEE241  Spring 2000 Advanced Digital Integrated Circuits. Announcements
EE241  Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low PowerLow Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks  3/7 by 5pm
More informationAnswers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2017 Midterm 2 Monday, November 6 Point values
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption
EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance
More informationObjective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components
Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationLecture 81. Low Power Design
Lecture 8 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas Email: k.masselos@ic.ac.uk Lecture 81 Based on slides/material
More informationUniversity of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA
University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm 3 @
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar
More informationDigital Integrated Circuits EECS 312
14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980
More informationName: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationEE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1
RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More information