Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.


 Emma Nichols
 3 years ago
 Views:
Transcription
1 ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler Paths! Energy asics & Optimization 2 Restore Output Pass Transistor Logic 4 Voltage of hain How compare! What is voltage at output? V dd =1V V thn =V thp =0.3V! ompare 5 6 1
2 nalysis chain of 3 nalysis chain of onclude Transient! an chain any number of pass transistors and only drop a single V th 9 10 Transient: Zoomed loseup Gate ascade?! What are voltages? V dd =1V V thn =V thp =0.3V
3 hain Together ascaded Pass Gates elay =1, =0, = diff = d? elay =1, =0, = diff = d?! What s the equivalent R circuit?! What s the equivalent R circuit? " What is the total delay? " rom to Y 2 g 2 g 3 d 2 d +2 g 3 d 2 d +2 g elay =1, =1, = diff = d? ascading Pass Gates! What s the equivalent R circuit? one stage /b /c /d y b /y c d 2 g /b /c /d 17 Penn ESE 3570 Spring Khanna 18 3
4 hain without Inverters! Extract key path /a a 19 Logic Types! MOS Gates " ual pulldown and pullup networks, only one enabled at a time " Performance of gate is strong function of the fanin of gate " Techniques to improve performance include sizing, input reordering, and buffering (staging)! Ratioed Gates " Have active pulldown (up) network connected to load device " Reduced gate complexity at expense of static power asymmetric transfer function " Techniques to improve performance include sizing to improve noise margins and reduce static power! Pass Gates " Implement logic gate as switch network for reduced area and load capacitance " Long cascades of switches result in quadratic increase in delay " lso suffer from reduced noise margins (V T drop) " Use levelrestoring buffers to improve noise margins! ynamic logic coming up soon 20 Transmission Gates MOS Transmission Gates LK LK 22 MOS Transmission Gates MOS Transmission Gates Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V
5 MOS Transmission Gates MOS Transmission Gates Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V  V Tp 25  V Tp 26 MOS Transmission Gates MOS Transmission Gates Note at t = 0  : V in = 0, V out = 0 at t = 0 + : V in = 0 > V  V Tp 27  V Tp 28 Transmission Gate, R eq Transmission Gate, R eq k p ( V  V Tp ) 2 k p [2( V  V tp ) (V out V )  (V out V ) 2 ] k p [2( V  V tp )  (V out V )] k p [2( V  V tp )  (V out V )]
6 Transmission Gate, R eq Transmission Gate Layouts Transmission Gate Layouts Euler Paths 33 NOR2 Layout NN2 Layout
7 Layout of omplex MOS Gate Layout of omplex MOS Gate S S GN Layout of omplex MOS Gate Minimize Number of iffusion Paths diffusion breaks d d d d d i.e. n, p Euler paths with identical sequences of inputs Minimize Number of iffusion Paths Minimize Number of iffusion Paths
8 Minimize Number of iffusion Paths Gate Layout lgorithm! 1. ind all Euler paths that cover the graph! 2. ind common n and p Euler paths! 3. If no common n and p Euler paths are found in step 2, partition the gate n and p graphs into the minimum number of subgraphs that will result in separate common n and p Euler paths Total Power Energy and Power asics! P tot P static + P dyn + P sc Review 46 Operating Modes Static Leakage Power! SteadyState: V in =V dd " PMOS: subthreshold " NMOS: resistive $ I Sp = I S # W ' & ) e & % % L ( $ V GS V T nkt / q ' $ $ V S '' ) & ) ( 1 e % kt / q ( & ) 1 λv S % ( ( )! W $ ( I Sn = µ n OX # & ( V GS V T )V S V 2 + S *  " L %) 2,
9 Static Power Ratioed Logic! I static?! Input lowoutput high? " I leak Static Power Ratioed Logic! I static?! Input lowoutput high? " I leak! Input highoutput low? " I pmos_on " ~V dd /R p,on Total Static Power! P statit p(v out =low)v 2 /R p,on +p(v out =high)vi s (W/L)eVt/(nkT/q) Switching p(v out =low) probability the output is low p(v out =high) probability the output is high ynamic Power p(v out =high)=1p(v out =low) Switching urrents Switching Energy! I switch (t) = I sc (t) + I dyn (t)! o we know what this is? I sc I sw I dyn! What is Q? E = Q = P(t)dt = I(t)V dd dt = V dd I(t)dt I dyn (t)dt Q = V = E = V dd 2 I(t)dt apacitor charging energy I dyn
10 Switching Power! Every time output switches 0#1 pay: " E = V 2 Switching! P dyn = (# 0#1 trans) V 2 / time Short ircuit Power! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½V 2 / time Short ircuit Power Short ircuit Power! etween V TN and V dd  V TP " oth N and P devices conducting! etween V TN and V dd  V TP " oth N and P devices conducting! Roughly: I sc Vin VddVthp Vthn Vdd time Vdd Isc 57 Vout tsc tsc time 58 Peak urrent! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall % I S ν sat OX W V GS V T V ( ST ' * & 2 ) I(t)dt I t % ' 1( peak sc 2 * & ) # E = V dd I peak t sc % 1& ( Vin $ 2' Vdd VddVthp Vthn time Vdd Isc Short ircuit Energy! Make it look like a capacitance, S " Q=I t " Q=V " " E = V dd I peak t sc 1 %% $ $ '' # # 2 && E = V dd Q S E = V dd ( S V dd ) = S V 2 dd Vout tsc tsc time
11 Short ircuit Energy! Every time switch " lso dissipate shortcircuit energy: E = V 2 " ifferent = sc " cs fake capacitance (for accounting) Short ircuit Energy! When transistors switch, both nmos and pmos networks may be nanotarily ON at once! Leads to a blip of short circuit current! < 10% of dynamic power if rise/fall times are comparable for input and output! We will generally ignore this component in hand analysis, but simulated measured results include it Switching Waveforms Switching Waveforms Switching Power harging Power! Every time output switches 0#1 pay: " E = V 2! P dyn = (# 0#1 trans) V 2 / time! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½V 2 / time! Often like to think about switching frequency! Useful to consider per clock cycle " requency f = 1/clockperiod! P dyn = (#trans/clock) ½V 2 f! P dyn = (# trans) ½V 2 / time
12 harging Power Switching Power! P dyn = (# 0#1 trans) V 2 / time! Often like to think about switching frequency! Useful to consider per clock cycle! P dyn = (#0#1 trans/clock) V 2 f! Let a = activity factor a = average #tran 0#1 /clock " requency f = 1/clockperiod! P dyn = (# 0#1 trans/clock) V 2 f! P dyn = av 2 f ctivity actor ctivity actor! Let a = activity factor! Let a = activity factor " a = average #tran 0#1 /clock " a = average #tran 0#1 /clock a = p(out i = 0) p(out i+1 =1) a = p(out i = 0)p(out i+1 =1) a = N N N 2 = N 0 (2N N 0 ) N 2 2N a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N Reduce ynamic Power? Reduce ctivity actor! P dyn = av 2 f Tree hain! How do we reduce dynamic power? a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N
13 Reduce ctivity actor Reduce ctivity actor Tree hain Tree hain a = p(out i = 0)p(out i+1 =1) 15/256 a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N Reduce ctivity actor Reduce ctivity actor Tree hain Tree hain a = p(out i = 0)p(out i+1 =1) 7/64 15/256 15/256 a = p(out i = 0)p(out i+1 =1) 7/64 15/256 a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N a = N 0 N 1 2 N 2 = N 0(2 N N 0 ) N 2 2 N Total Power! P tot = P static + P sc + P dyn! P sw = P dyn + P sc a( load V 2 f)! P tot a( load V 2 f) + VI s (W/L)eVt/(nkT/q) Idea! MOS " esign for worst case input switching case and delay! There are other logic disciplines " Ratioed logic " an use pass transistors for logic " Transmission gates " Will see in use in dynamic logic! Let a = activity factor a = average #tran 0#1 /clock
14 Midterm Exam Midterm Topics List! Midterm 3/21 " uring class; starts at exactly 1:30pm, ends at exactly 2:50pm (80 minutes) " Location: ollege Hall 200 " Old exams posted on old course websites " overs Lec inclass worksheet " losed book, no notes or cheat sheets " alculators allowed and recommended, no smart phones! Identify MOS/non MOS! ny logic function $# MOS gate! Noise Margins! ircuit first order switching rise/fall times " Output equivalent resistance " Load capacitance! Transistor " Regions of operation " Parasitic apacitance Model! Layout and stick diagrams! Sizing! 1 st order delay " Worst case " Elmore delay! Ratioed logic 79! Pass logic 80 14
! Energy Optimization. ! Design Space Exploration. " Example. ! P tot P static + P dyn + P sc. ! SteadyState: V in =V dd. " PMOS: subthreshold
ESE 570: igital Integrated ircuits and VLSI undamentals Lec 17: March 26, 2019 Energy Optimization & esign Space Exploration Lecture Outline! Energy Optimization! esign Space Exploration " Example 3 Energy
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization
More information! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:
ESE 570: Digital Integrated ircuits and LSI Fundamentals Lecture Outline! Inverter Power! Dynamic haracteristics Lec 10: February 15, 2018 MOS Inverter: Dynamic haracteristics " Delay 3 Power Inverter
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: TwoInput NOR Gate (NOR2)
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!
More informationBased on slides/material by. Topic 34. Combinational Logic. Outline. The CMOS Inverter: A First Glance
ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC
ESE 570: Digital Integrated Circuits and LSI Fundamentals Lec 0: February 4, 207 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic Characteristics
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationName: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationCMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits
Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More information! Delay when A=1, B=0? ! CMOS Gates. " Dual pulldown and pullup networks, only one enabled at a time
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Pass Transistor XOR Delay when A, B0? Start with equivalent RC circuit Lec : October 9, 08 Driving Large Capacitive Loads 3
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 16, 2016 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationStatic CMOS Circuits
Static MOS ircuits l onventional (ratioless) static MOS» overed so far l Ratioed logic (depletion load, pseudo nmos) l ass transistor logic ombinational vs. Sequential Logic In Logic ircuit In Logic
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationCARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002
CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More informationCheck course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory
EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday
More informationCPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 016 MOS Inverter: Static Characteristics Lecture Outline! Voltage Transfer Characteristic (VTC) " Static Discipline Noise Margins!
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " DLatch " Timing Constraints! Dynamic Logic " Domino
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka )
More informationVLSI Design I; A. Milenkovic 1
PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka ) www. ece.uah.edu/~milenka/cpe573f
More informationCPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look
CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )
More informationAnswers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2017 Midterm 2 Monday, November 6 Point values
More informationMOS SWITCHING CIRCUITS
ontent MOS SWIHING IRUIS nmos Inverter nmos Logic Functions MOS Inverter UNBUFFR MOS LOGI BUFFR MOS LOGI A antoni 010igital Switching 1 MOS Inverters V V V V V R Pull Up Pu Pu Pu Pull own G B Pd Pd Pd
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationDynamic operation 20
Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationCMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.
CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationDelay and Power Estimation
EEN454 Digital Integrated ircuit Design Delay and Power Estimation EEN 454 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But make it easier to ask What
More informationCPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationChapter 37. An Exercise. Problem 1. Digital ICDesign. Problem. Problem. 1, draw the static transistor schematic for the function Q = (A+BC)D
igital Iesign Problem Parameters rom a.35 um process hapter 37 n Exercise, draw the static transistor schematic or the unction (+), ind the corresponding domino gate using a PN net 3, ind the Euler path
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption
EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges
More informationEE241  Spring 2000 Advanced Digital Integrated Circuits. Announcements
EE241  Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low PowerLow Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks  3/7 by 5pm
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.
More informationDesign of Analog Integrated Circuits
Design of Analog Integrated Circuits Chapter 11: Introduction to Switched Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationVLSI Circuit Design (EEC0056) Exam
Mestrado Integrado em Engenharia Eletrotécnica e de omputadores VLSI ircuit esign (EE0056) Exam 205/6 4 th year, 2 nd sem. uration: 2:30 Open notes Note: The test has 5 questions for 200 points. Show all
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: omplementary MO Logic Gates epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM
More informationName: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationEE 330 Lecture 39. Digital Circuits. Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates)
EE 330 Lecture 39 Digital ircuits Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates) Review from last lecture Other MOS Logic Families Enhancement Load NMOS Enhancement
More informationLecture 81. Low Power Design
Lecture 8 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas Email: k.masselos@ic.ac.uk Lecture 81 Based on slides/material
More informationB.Supmonchai August 1st, q Indepth discussion of CMOS logic families. q Optimizing gate metrics. q High Performance circuitdesign techniques
ugust st, 4 Goals of This hapter hapter 6 Static MOS ircuits oonchuay Supmonchai Integrated esign pplication Research (IR) Laboratory ugust, 4; Revised  June 8, 5 Indepth discussion of MOS logic families
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationLecture 14  Digital Circuits (III) CMOS. April 1, 2003
6.12  Microelectronic Devices and Circuits  Spring 23 Lecture 141 Lecture 14  Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:
More informationDesign for Manufacturability and Power Estimation. Physical issues verification (DSM)
Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity
More informationIntroduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline
Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and
More information! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationEECS 141: SPRING 09 MIDTERM 2
University of California College of Engineering Department of Electrical Engineering and Computer Sciences J. Rabaey WeFr 23:30pm We, April 22, 2:003:30pm EECS 141: SPRING 09 MIDTERM 2 NAME Last First
More information! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!
More informationEE115C Digital Electronic Circuits Homework #6
Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationLecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD
More informationAnnouncements. EE141 Spring 2003 Lecture 8. Power Inverter Chain
 Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :303pm at BWRC (in lieu of Tuesday) Today s lecture Power
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides
More informationLecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:308:00pm in 105 Northgate
EE4Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:308:00pm in 05 Northgate Exam is
More informationHomework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout
0/6/06 Homework # Lecture 8, 9: Sizing and Layout of omplex MOS Gates Reading: hapter 4, sections 4.34.5 October 3 & 5, 06 hapter, section.5.5 Prof. R. Iris ahar Weste & Harris vailable on course webpage
More informationVLSI Design I; A. Milenkovic 1
Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More information