Advantages and Challenges of Advanced MOSFETs for Analog and RF applications

Size: px
Start display at page:

Download "Advantages and Challenges of Advanced MOSFETs for Analog and RF applications"

Transcription

1 Advantages and Challenges of Advanced MOSFETs for Analog and RF applications Valeriya Kilchytska, Sergej Makovejev, Jean-Pierre Raskin, Denis Flandre ICTEAM Institute, Université catholique de Louvain Louvain-la-Neuve, Belgium

2 Outline Introduction Analog/RF Figures of Merit Methodology used for device assessment Advantages and challenges Common Features: Si film thinning and high-µ channels UTBB specificities: Back gate biasing Analog FoM variation in a f-range Importance of parasitics Conclusions 2

3 Introduction Device downscaling is accompanied by introduction of new materials and new architectures, affecting Analog/RF FoM Two main contenders: UTBB FDSOI and MuGFET Both technologies are promising for Analog/RF We do not target to answer Which technology is better for Analog/RF? But highlight common features and specificities of both architectures Source: 211 ITRS Executive Summary Fig 5 3

4 Analog/RF Figures of Merit Key-factors: MOSFET-level f T = g m /(2 p C gg ) f max A v = g m /g d = (g m /I d ) V EA const ( f ) depends on Transconductance g m Drive current, I d Output conductance, g d Early voltage, V EA (V EA =I d /g d ) g m /I d ratio IC (amplifier)-level GBW = g m /(2 p C L ) = = (g m /I d ) (I d /(2 p C L )) V in V DD I bias C L f f T max gm 2p C gs gm 4p C gs C 1 C gd gs C 1 C gd gs Gate capacitance, C gg Parasitics (C, R) 1 gd R s Rd gm gd gd Cgs g d C 1 C gd gd R g R 1 s Rs gm 2 Cgs Cgs C 4

5 G m /I d, V -1 Methodology 3 2 g m /I d Technique Baseband applications (High gain, High precision) WI: ~1/S L=3nm V sub = V (2µC ox /ni dnorm ) SI: µ,, n High Frequency applications (High drive current) 1 R sd v sat V. Kilchytska et al. SSE Normalized drain current, I d /(W/L), A independent on V T independent on L (except SCE) independent on V sub g m /W V d =1 V V g =V Th +.6 V g m -A v Analog Metric SCE, R sd Short-L Long-L Intrinsic gain, A v analogue of I on I off digital metric very visual independent on V T Allow fair comparison of different devices & at different conditions 5

6 Common features Si film thinning g m /W (ms/µm) 2 W NW =15 nm (a) W NW =45 nm W=1 µm quasi-planar.5 1 L=17 nm 1µm V g =.2 1.4V V d =1 V V UTBB g =V Th +.6 VV. Kilchytska et al. EuroSOI 214 V. Kilchytska et al. SSE Intrinsic gain, A v (db) Drain Voltage, V d, V quasi volume inversion operation conditions + improved SCE control I d and g m are improved V EA & A v Intrinsic Gain, A v, db 4 L = 3 nm 3 2 A v v = (g ( m /I d ) V EA operation bias point at ~V T on the condition that R sd, interfaces, µ, etc. are well tolerated 6

7 Common features High-µ channels G m /I d, V -1 At present either strain introduction or channel orientation 3 2 FinFETs L=5nm V d =1V g m /W (ms/µm) P-channel g m,max_lin /(W/L) (µs) P-channel (a) 1 V d =2 mv L (nm) 1 w/ strain L=17 nm 1µm w/o strain I dnorm, I d /(W/L), A µ booster G m, I d SCE control S and DIBL V EA Tradeoff for Analog??? Depends on application / bias point of interest V d =1 V V g =V Th +.6 V Intrinsic gain, A v (db) V. Kilchytska et al. EuroSOI 214 7

8 UTBB specificity effect of GP S G D gm/w (µs/µm) M.K.Arshad et al. SSE 213 L= 3 nm 1 µm Intrinsic gain, Av (db) no-gp p-gp n-gp V d = 1. V V g = V Th +.6 V p-substrate GP implementation in UTBB: SUB back-bias schemes V T adjustment Improved SCE control (suppression of SUB depletion) BUT Additional implantation µ degradation? SUB depletion suppression body factor n p n BOX GP Any effect on Analog FoM? G m and I d stay almost unaffected sensitive to GP realization (e.g. if GP implantation is not well adjusted, one might see DIBL V EA A v_dc ) 8

9 Specificity of UTBB V sub : S, DIBL, but V T I on V sub + : µ G m max & I on Effect of V sub Trade-off for analog FoM??? Early Voltage, V EA, V I d /(W/L), µa 15 Vsub=-2V L=1nm V -.5V 1 V.5V 1V 1.5V L=3nm G m /I d = 1V -1 5V -1 L=1nm G m /I d, V Substrate bias, V d =V V g, sub V, V V d =V g, V V. Kilchytska et al. SSE 212 Intrinsic Gain, A v, db Vsub=-2V V -.5V V.5V 1V 1.5V V d =V g, V V sub + I d norm of 5-1% (sign of µ ) V sub V EA (as a result of DIBL improvement) G m /I d (at low V g =V d ) (result of V T shift) one can win ~ 5 db (in max A v range) V sub I d V EA g m /I d A v + - Choice of V sub + or - depends on targeted applications (either I d or A v ) 9

10 Specificity of UTBB ADG regime: V g =V sub (similar to DTMOS in PDSOI) V t s gox V g source channel t box Si substrate V d V GP drain BOX GP QDG regime: V sub (or V GP ) = k V g V t s gox source channel t box Si substrate ADG regime V g with k=1 25 V d V GP drain BOX GP Gm/W, µs/µm 6 4 b V sub V d =1V, V g ~V Th 2 SG ADG k=5 k=1 k=15 k= V. Kilchytska et al., SSE 213 Av, db V sub Beneficial and ± easy thanks to thin BOX and GP simultaneous improvement of electrostatic features and performance enhancement V Th modulation achieved in ADG & QDG mode is accompanied by S and DIBL and I off =const (Contrarily to the constant V sub biasing in SG mode) I d and G m + DIBL + A v can actually be exploited for analog applications impact of parasitic resistance and capacitance??? dynamic performance reduction??? 1

11 g m - A v metric f-range f S. Makovejev et al. ULIS 214 S parameters VNA 4 khz 4 GHz S ij Y ij conversion de-embedding g d = Re(Y dd ) L f Frequency-dependent effects: Floating body, self-heating, substrate coupling, g d (f) & g m (f) Gain (f) Performance prediction from DC data is insufficient Quest for wide-f characterization g m A v analogue metric is strongly f-dependent: g m, g d, A v with f g d (f) = g intr + Dg d_fb (f) + Dg d_sh (f) + Dg d_sub (f) 11

12 g d (f) Reasons Conductance, ms S parameters VNA 4 khz 4 GHz de-embedding S ij Y ij conversion g d = Re(Y dd ) V g =V d =1V L = 1 nm nogp SH SUB Dg d_sub Dg d_sh source BG C R sub GR R Si gate channel C BOX C inv C SC C Si drain BOX substrate Response of minority carriers f 1SUB ~ (C SC R GR ) -1 Response of majority carriers f 2SUB ~ (C Si R Si ) -1 1 V g =.6 V; V d =1V DC S. Makovejev et al. SSE 212 Frequency, Hz Two main reasons of g d (f) variation in UTBB are: SH and SUB-related effects g d (f) = g intr + Dg d_fb (f) + Dg d_sh (f) + Dg d_sub (f) v BGS D g ( n 1) g C d _ SUB BGD C CBGD C SBG GBG m C v v sub BGS DS v DS V. Kilchytska et al. IEEE EDL 23 12

13 g d (f) vs. techno L, T Si, BOX scaling phonon boundary scattering (when smaller than phonon mean free path 1-3 nm) thermal capacitance C th use SOI-like architectures high J ds SH SUB L T Si ± W fin BOX S-to-D proximity Inversion in the substrate (by V d ) over the whole S-to-D distance high J ds interface proximities interface effects thermal conductivity R th coupling through the substrate reduces thinner thermal barrier stronger coupling through the substrate 13

14 g d (f) UTBB GP effect S G D n p n nogp p-substrate BOX GP SUB with GP S. Makovejev et al. ULIS 214 GP allows to suppress SUB-related g d (f) variation SH is the main reason of g d (f) variation g d (f) = g intr + Dg d_fb (f) + Dg d_sh (f) + Dg d_sub (f) 14

15 A v (f) experiments UTBB UTBB vs. FinFET FinFET with GP ~1% SH SUB SH no GP SUB ~35% S. Makovejev et al. SOI Conf. 211 S. Makovejev PhD Thesis 212 SH is the main reason of g d (f) variation both in UTBB FDSOI and SOI-based FinFETs 15

16 f T (GHz) Importance of parasitics C dse C gse C gsi C gde C gdi With devices downscaling importance of extrinsic device parasitics enormously increases. They can even dominate. Particularly important for advanced architectures (multi-fins, 3D, thin-body, ) C dsi C dse Intrinsic Pointed out on example of FinFETs: measured f T values (i.e. including parasitics) are much lower in FinFETs comparing to the planar counterparts, while intrinsically achievable values are the same It is important to separate intrinsic and extrinsic elements C gd = C g de + C g di C g de Including Extrinsic R g G ate C gs = C g s e + C g s i C g di Intrins ic g m.v gs g d R d Drain C ds = C ds e + C ds i J.-P. Raskin J. of Telecom. and Information Technology 29 C g s e C g s i C ds i C ds e R s L g (nm) S ourc e 16

17 RF FoM FinFETs Effect of parasitics f T L=6nm C inner R s +R d C outer f max C inner R s +R d C outer R g J.-P. Raskin J. of Telecom. and Information Technology 29 Wu and Chan (IEEE TED 27) 6% of f T is due to C inner 15% due to C outer + R S,D 4% of f max is due to R g 3% due to C inner C inner is a big bottleneck for FinFET s RF performance Specific for 3D Largest effect is due to coupling between S/D side walls and G wrapping between the fins C inner is predicted to be reduced by S fin or by H fin /W fin C ov C 3 C 1 C 2 C C C 17

18 RF FoM UTBB Effect of parasitics Parasitic R sd no - GP f T ext. g m int. g m (w/o R sd ) L = 3 nm L = 5 nm L = 1 nm UCL Parasitic C gge C gg C g g e C ggi no - GP (IT R S ) L = 27 nm) L = 3 nm L = 5 nm L = 1 nm HP L OP M.K.Arshad et al, SSE 214 Increased impact of R sd and C gge as L particularly C gge : C ggi > C gge in 1 nm-long devices, but C gge > C ggi in 3 nm-long ones Process was not optimized for RF f T as high as requested by ITRS for LP applications is achievable if ITRS requirements for R sd and C gg are respected 18

19 Conclusions #1 Conductance, ms L = 1 nm V g =V d =1V V g =.6 V; V d =1V SH SUB DC Frequency, Hz Performance prediction based exclusively on DC data may be inaccurate (device benchmarking may be misleading) W f = 5 N f = 8 no - GP ext. f T int. f T (w/o R sd ) int. f T (w/o R sd + C gge ) L = 3 nm L = 5 nm L = 1 nm (ITR S ) L = 27 nm) HP L OP Impact of parasitics on device FoM enormously increases with L wide-band analysis is required for the fair FoM assessment separation of intrinsic and extrinsic elements (and related performance) is mandatory adequate structures (with RF access pads) should be included in the layout from the very beginning of the technology development 19

20 Conclusions #2 Transconductance, g m /W, µs/µm Planar [ref.36 in *] FinFETs [ref.36 in *] Optimized FinFETs [ref.36 in *] UTBB W=1µm [*] UTBB W=8nm [*] Intrinsic Gain, A v, db UTB B UTB B UTB B S tres s /s train E ng. F inf E T + P DS OI X B UL K X P DS OI w/ s tres s /s train + B UL K w/ s tres s /s train UT B UT B B UT B B w/o R + sd UT B B w/o R sd and C gge E T S OI IT R S Both technologies are promising for Analog/RF outperforming other technologies Both FinFETs and UTBB exhibits relatively high f T (not as high as HP targeted processes), but combined with LOP and LSTP Potential for improvement through the optimisation of parasitics Good contender for mobile/wireless applications with LOP/LSTP options 2

21 ACKNOWLEDGEMENTS Our Colleagues and PhD students M.K.Md. Arshad, D. Lederer, P. Simon, G. Pailloncy, M. Emam, L. Vancaillie, D. Levaque, T. Rudenko, J. Alvarado, O. Moldavan, T.M. Chung, A. Kranti, J. Tinoco, S. Burignat actively participated in the characterization/simulation work as well as gathering and analyzing the results presented during this short course Leti & ST-M teams and particularly F. Andrieu, O. Faynot, T. Poiroux, M. Haond, N. Planes for providing UTBB FD SOI devices and valuable discussions Imec team and particularly N. Collaert, C. Claeys, M. Dehan, M. Jurczak, A. Mercha, B. Parvais, R. Rooyackers, E. Simoen, V. Subramanian for providing FinFETs and valuable discussions Research projects. Reaching 22 WELCOME Characterization Platform (ELEN/ICTEAM/UCL): 21

Ultimately Scaled CMOS: DG FinFETs?

Ultimately Scaled CMOS: DG FinFETs? Ultimately Scaled CMOS: DG FinFETs? Jerry G. Fossum SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130 J. G. Fossum / 1 Outline Introduction -

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING. M. Reyboz, O. Rozeau, T. Poiroux, P. Martin

ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING. M. Reyboz, O. Rozeau, T. Poiroux, P. Martin ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING M. Reyboz, O. Rozeau, T. Poiroux, P. Martin 005 OUTLINE I INTRODUCTION II ADG ARCHITECTURE III MODELING DIFFICULTIES I DIFFERENT WAYS OF MODELING

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

EKV MOS Transistor Modelling & RF Application

EKV MOS Transistor Modelling & RF Application HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

ANALYTICAL SOI MOSFET MODEL VALID FOR GRADED-CHANNEL DEVICES

ANALYTICAL SOI MOSFET MODEL VALID FOR GRADED-CHANNEL DEVICES ANALYICAL SOI MOSFE MODEL VALID FOR GRADED-CHANNEL DEVICES Benjamín Iñíguez 1, Marcelo Antonio Pavanello 2,3, João Antonio Martino 3 and Denis Flandre 4 3 Escola ècnica Superior d`engenyeria Universitat

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005 6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response

More information

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY T. Poiroux, P. Scheer*, O. Rozeau, B. de Salvo, A. Juge*, J. C. Barbé, M. Vinet CEA-Leti,

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport 2011 Workshop on Compact Modeling Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport Christian Enz 1,2, A. Mangla 2 and J.-M. Sallese 2 1) Swiss Center for Electronics

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan

STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan Department of Information Technology SSN College of Engineering, Kalavakkam 603 110, Chennai,

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Graphene and new 2D materials: Opportunities for High Frequencies applications

Graphene and new 2D materials: Opportunities for High Frequencies applications Graphene and new 2D materials: Opportunities for High Frequencies applications April 21th, 2015 H. Happy, E. Pallecchi, B. Plaçais, D. Jiménez, R. Sordan, D. Neumaier Graphene Flagship WP4 HF electronic

More information

The PSP compact MOSFET model An update

The PSP compact MOSFET model An update The PSP compact MOSFET model An update Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen NXP Semiconductors Ronald van Langevelde Philips Research Europe Gennady Gildenblat, Weimin Wu, Xin Li, Amit Jha,

More information

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS 34 CHAPTER 3 EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS In this chapter, the effect of structural and doping parameter variations on

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Physics-based compact model for ultimate FinFETs

Physics-based compact model for ultimate FinFETs Physics-based compact model for ultimate FinFETs Ashkhen YESAYAN, Nicolas CHEVILLON, Fabien PREGALDINY, Morgan MADEC, Christophe LALLEMENT, Jean-Michel SALLESE nicolas.chevillon@iness.c-strasbourg.fr Research

More information

Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing

Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing Cryogenic Characterization of 8 nm Bulk CMOS Technology for Quantum Computing Arnout Beckers, Farzan Jazaeri, Andrea Ruffino, Claudio Bruschini, Andrea Baschirotto, and Christian Enz Integrated Circuits

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Accurate Analysis of the Number of Fins in the Triple- Gate FinFET Capacitance Compact Model

Accurate Analysis of the Number of Fins in the Triple- Gate FinFET Capacitance Compact Model International Journal of Engineering & Technology IJET-IJENS Vol:15 No:02 1 Accurate Analysis of the Number of Fins in the Triple- Gate FinFET Capacitance Compact Model Omar H. El-Sewefy Mentor Graphics

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

Unified Compact Model for Generic Double-Gate

Unified Compact Model for Generic Double-Gate WCM-MSM007 Workshop on Compact Modeling 10th International Conference on Modeling and Simulation of Microsystems Santa Clara, California, USA Unified Compact Model for Generic Double-Gate MOSFETs Xing

More information

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Alon Vardi, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability

Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability A. Asenov 1,2, E. A. Towie 1!! 1 Gold Standard Simulations Ltd 2 Glasgow University! Summary!! Introduction!! FinFET complexity

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Ultra-Scaled InAs HEMTs

Ultra-Scaled InAs HEMTs Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim 2,3, Jesús. A. del Alamo 2, and Mathieu Luisier 1 1 Network for Computational ti Nanotechnology and Birck

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Open-loop Gain: g m r o

More information

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs 42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4,

More information

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003 6.0 Microelectronic Devices and Circuits Spring 003 Lecture 3 Lecture 3 Frequency Resp onse of Amplifiers (I) CommonSource Amplifier May 6, 003 Contents:. Intro duction. Intrinsic frequency resp onse of

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0 MOS Models & Parameter Extraction Workgroup Arbeitskreis MOS Modelle & Parameterextraktion XFAB, Erfurt, Germany, October 2, 2002 Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0 Matthias

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Compact Modelling Techniques in Thin Film SOI MOSFETs

Compact Modelling Techniques in Thin Film SOI MOSFETs Compact Modelling Techniques in Thin Film SOI MOSFETs Benjamin Iñiguez Denis Flandre* Departament d Enginyeria Electrònica, Elèctrica i Automàtica ETSE; Universitat Rovira i Virgili Avinguda dels Països

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

MOSFET SCALING ECE 663

MOSFET SCALING ECE 663 MOSFET SCALING Scaling of switches Moore s Law economics Moore s Law - #DRAM Bits per chip doubles every 18 months ~5% bigger chips/wafers ~5% design improvements ~50 % Lithography ability to print smaller

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

Characteristics of Active Devices

Characteristics of Active Devices 007/Oct/17 1 haracteristics of Active Devices Review of MOSFET Physics MOS ircuit Applications Review of JT Physics MOS Noise JT Noise MS/RF Technology Roadmap MS MOS 1., 1.0, 0.8µm 0.60, 0.50µm 0.45,

More information

ECE 305: Fall MOSFET Energy Bands

ECE 305: Fall MOSFET Energy Bands ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals

More information

Monolithic Microwave Integrated Circuits

Monolithic Microwave Integrated Circuits SMA5111 - Compound Semiconductors Lecture 10 - MESFET IC Applications - Outline Left over items from Lect. 9 High frequency model and performance Processing technology Monolithic Microwave Integrated Circuits

More information

The HV-EKV MOSFET Model

The HV-EKV MOSFET Model The HV-EKV MOSFET Model Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland EPFL Team Yogesh Singh Chauhan, Costin Anghel, Francois Krummenacher, Adrian Mihai Ionescu and Michel Declercq CMC Meeting,

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered

More information

Recent Development of FinFET Technology for CMOS Logic and Memory

Recent Development of FinFET Technology for CMOS Logic and Memory Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley Why FinFET Outline FinFET process Unique features of FinFET Mobility,

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

Comparative study of non-linearities in 28 nm node FDSOI and Bulk MOSFETs

Comparative study of non-linearities in 28 nm node FDSOI and Bulk MOSFETs Comparative study of non-linearities in 28 nm node FDSOI and Bulk MOSFETs V. Kilchytska 1, B. Kazemi Esfeh 1, C. Gimeno 1, B. Parvais 2, N. Planes 3, M. Haond 3, J.-P. Raskin 1, D. Flandre 1 1 1CTEAM,

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

SMALL-SIGNAL MODELING OF RF CMOS

SMALL-SIGNAL MODELING OF RF CMOS SMALL-SIGNAL MODELING OF RF CMOS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Moore s Law Technology Scaling and CMOS

Moore s Law Technology Scaling and CMOS Design Challenges in Digital High Performance Circuits Outline Manoj achdev Dept. of Electrical and Computer Engineering University of Waterloo Waterloo, Ontario, Canada Power truggle ummary Moore s Law

More information

Lecture 3: Transistor as an thermonic switch

Lecture 3: Transistor as an thermonic switch Lecture 3: Transistor as an thermonic switch 2016-01-21 Lecture 3, High Speed Devices 2016 1 Lecture 3: Transistors as an thermionic switch Reading Guide: 54-57 in Jena Transistor metrics Reservoir equilibrium

More information

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) The Future of CMOS David Pulfrey 1 CHRONOLOGY of the FET 1933 Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) 1991 The most abundant object made by mankind (C.T. Sah) 2003 The 10 nm FET

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Advanced Compact Models for MOSFETs

Advanced Compact Models for MOSFETs Advanced Compact Models for MOSFETs Christian Enz, Carlos Galup-Montoro, Gennady Gildenblat, Chenming Hu, Ronald van Langevelde, Mitiko Miura-Mattausch, Rafael Rios, Chih-Tang (Tom) Sah Josef Watts (editor)

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type WCM in Boston 15. June, 2011 M. Miura-Mattausch, M. Miyake, H. Kikuchihara, U. Feldmann and

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Main CMOS design rules & basic circuits GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September

More information