# Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Size: px
Start display at page:

Download "Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers"

Transcription

1 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night, November 5, Room Closed book; formula sheet provided; one crib sheet permitted Review Biasing and amplifier metrics Current mirrors in emitter and source circuits Performance metrics: gains (voltage, current, power); input and output resistances; power dissipation; bandwidth Midband analysis Biasing capacitors: short circuits above w LO Device capacitors: open circuits below w HI Midband: w LO < w < w HI Buildingblock stages Common emitter/source Common base/gate Emitter/source follower Series feedback Shunt feedback (also called common collector/drain) (more commonly: emitter/source degeneration) Clif Fonstad, 11/03 Lecture 18 Slide 1

2 Linear amplifier performance metrics: The characteristics of linear amplifiers that we use to compare different amplifier designs, and to judge their performance and suitability for a given application are given below: i in i out Linear Amplifier Rest of circuit Voltage gain, A v = / Current gain, A i = i out /i in Power gain, A power = P out /P in = i out / i in = A v A i Input resistance, r in = /i in i test Linear Amplifier v test Output resistance, r out = v test /i test with = 0 DC Power dissipation, P DC = (V V )(S 's) Clif Fonstad, 11/03 Lecture 18 Slide 2

3 Linear equivalent circuits: pn diodes: g d a C d g d = q I D /kt C d = g d t d C dpl (V AB ) BJTs: (in FAR) b e g p v p MOSFETs: g v gs C gd Cp C m g m v p (in saturation) C gs g m v gs g mb v bs g o s s v bs C db C sb b b C gb g o g m = q I C /kt g p = g m /b F g o = I C /V A [or l I C ] C p = g m t b C dpl,be (V BE ) [t b = w B2 /2D e ] C m = C dpl,bc (V BC ) g m = K(V GS V T ) = (2K I D ) 1/2 g mb = hg m [h = {e Si qn A /2( 2f p V BS )} 1/2 /C ox* ] g o = I D /V A [or l I D ] C gs = (2/3) WL C ox * C gd : GD fringing and overlap capacitance, all parasitic C sb, C gb, C db : depletion capacitances Clif Fonstad, 11/03 Lecture 18 Slide 3 c e d v ds

4 BJTs and MOSFETs biased for linear amplifier applications V V V V V V V V npn pnp nmos pmos Clif Fonstad, 11/03 Lecture 18 Slide 4

5 Examples of current mirror biased BJT circuits: V V V R REF Q 1 I C R REF Q 1 I C V Above: Concept Right: Implementations Q 2 Q 3 V BJT Mirror I C (A Q3 /A Q2 ) I REF Q 2 Q 3 V MOSFET Mirror I C (K Q3 /K Q2 ) I REF Clif Fonstad, 11/03 Lecture 18 Slide 5

6 Looking at a complicated circuit: Lesson I Find the biasing circuitry and represent it symbolically Consider the following example: 1.5 V Q 1 A Q 2 Q 3 Q 4 Q 5 Q 8 Q 10 Q 11 A Q 23 Q 9 5 R 1 B v IN1 B Q 7 Q 6 Q 19 v IN2 B R 2 R 3 Q 12 Q 13 Q 14 Q 15 Q 20 B Q B 21 Q B 22 Q 24 Q 16 Q 17 v OUT Q Circuitry providing the V REF 's 1.5 V 8 of the 24 transistors are "only" used for biasing the other 16 transistors! If we get them out of the picture for awhile, the circuit looks simpler: Clif Fonstad, 11/03 Lecture 18 Slide 6

7 Looking at a complicated circuit: Lesson I, cont. segregating out the biasing circuitry Indicating the current sources symbolically lets you focus on the action: 1.5 V Q 2 Q 3 Q 4 Q 5 Q 8 Q 10 Q 11 5 Q 9 v IN1 Q 6 Q 7 R 2 R 3 Q 12 Q 13 v IN2 Q 14 Q 15 Q 16 Q 17 v OUT V 16 transistors left. In Lessons II and III we reduce the number to 5! Stay tuned Clif Fonstad, 11/03 Lecture 18 Slide 7

8 Three BJT singletransistor amplifiers V V V V COMMON EMITTER Input: base Output: collector Common: emitter V I C BIAS I V v IN COMMON BASE Input: emitter Output: collector Common: base EMITT ER FOLLOWER

9 Three MOSFET singletransistor amplifiers V V V V COMMON SOURCE Input: gate Output: drain Common: source Substrate: to source V C I v IN COMMON GATE Input: source; Output: drain Common: gate; Substrate: to ground V SOURCE FOLLOWER

10 Singletransistor amplifiers with feedback V V R F R F V Series feedback also termed "emitter degeneration" R F Shunt feedback Clif Fonstad, 11/03 Lecture 18 Slide 10 R F V

11 The "midband"concept: frequency range of constant gain and phase V V v t Common emitter example: The linear equivalent circuit for the common emitter amplifier stage on the left is drawn below with all of the elements included: r t g p gm v p g o v p C p C m g LOAD gnext r IBIAS The capacitors are one of two types: Biasing capacitors: typically very large (in µf range) (,, etc.) effectively shorts above some w LO Device capacitors: typically very small (in pf range) (C p, C m, etc.) effectively open until some w HI Clif Fonstad, 11/03 Lecture 18 Slide 11

12 The "midband"concept, cont.: At frequencies above some value ( w LO ) The biasing capacitors look like shorts: v t r t g p gm v p g o v p C p C m g LOAD gnext r IBIAS At frequencies below some other value ( w HI ) The parasitic capacitors look like open circuits: v t r t g p gm v p g o v p C p C m g LOAD gnext r IBIAS Clif Fonstad, 11/03 Lecture 18 Slide 12

13 The "midband"concept, cont.: If w LO < w HI, then there is a range where all of the capacitors are either short circuits (the biasing capacitors) or open circuits (the parasitics). v t r t g p gm v p g o v p C p C m g LOAD gnext r IBIAS We call the frequency range between w LO and w HI the "midband" range; for frequencies in this range our model is simply: r t g p v t v p g m v p g o Valid for w LO < w< w HI, i.e. in the "midband" range. [where all bias capacitors are shorts and all parasitic capacitors are open] g l (= g LOAD g next ) Clif Fonstad, 11/03 Lecture 18 Slide 13

14 Common emitter/source amplifiers Common emitter V v t r t v g p in v p g m v p g o g l Midband LEC for common emitter g l : conductance of "LOAD" and anything connected at " " BJT MOSFET A v : g m /(g o g l ) g m /(g o g l ) g m (R o r l ) g m (R o r l ) V A i : b g l /(g o g l b R in : r p R out : 1/g o = r o 1/g o = r o A good workhorse gain stage Clif Fonstad, 11/03 Lecture 18 Slide 14

15 Common base/gate amplifiers V Common gate Midband LEC for common gate g l : conductance of "LOAD" and anything connected at " " C I The conductance of can be neglected. BJT MOSFET v IN v t r t (g m g mb )v sg A v : (g m g o )/(g l g o ) (g m g mb g o )/(g l g o g m (r l r o (g m g mb )(r l r o ) V A i : (g m g o )/(g m g o g p g p g o /g l ) 1 R in : [g m g p g o (g l g m )/(g l g o )] 1 [g m g mb g o (g l g m g mb )/(g l g o )] 1/(g m g p ) = r p 1/(g m g mb ) R out : r o [1 (g m g o )/(g p g t )] r o [1 (g m g mb g o )/g t (b1)r o A very low R in, large R out stage often used to complement other stages Clif Fonstad, 11/03 Lecture 18 Slide 15 g o g l = v sg

16 Emitter/source followers Emitter Follower V V A great output buffer stage with small R out, big R in v t r t Midband LEC for emitter follower g l : conductance of " " and anything connected at " " BJT g p v p g m v p g o MOSFET A v : 1/[1 (g o g l )/(g m g p )] 1/[1 (g o g l )/g m 1 A i : b g l /(g o g l ) R in : 1/g p (b1)/(g o g l ) = r p (b1) r o r l R out : [g o g l (g m g p )/(1 g p r t )] 1 [g o g l g m ] (r t r p 1/g m Clif Fonstad, 11/03 Lecture 18 Slide 16 g l

17 Series Feedback: emitter/source degeneration Emitter degeneration V v t r t v g p in v p g m v p g o g l R F R F Midband LEC emitter degeneration g l : conductance of "LOAD" and anything connected at " " BJT MOSFET A v r l /R r l /R F A i b R in r p (b1)r F V R out 1/g 1/g o Useful in discrete device circuit design; we use to understand commonmode gain suppression in differential amplifiers Clif Fonstad, 11/03 Lecture 18 Slide 17

18 Feedback: shunt feedback element Shunt feedback R F V V v t r t v g p in v p g m v p g o g l Midband LEC for a shunted commonemitter g l : conductance of "LOAD" and anything connected at " " BJT MOSFET A v : (g m G F )/(g o G F ) (g m G F )/(g o G F g m R g m R F A i g l /G g l /G F R in : 1/[g p G F (1A v )] R F /(1A v r p R F /(1A v ) R out (r o R F (r o R F ) Used to stabilize high gain circuits and in transimpedance amplifiers; the same topology leads to the Miller effect (Lec. 24). Clif Fonstad, 11/03 Lecture 18 Slide 18 R F

19 Summary of the stages (bipolar) Common emitter Common base Emitter follower Emitter degeneration (series feedback) Shunt feedback Voltage gain, A v g m [ ] g o g l Current gain, A i ( = g m r l ') b g l g o g l [ ] g m r ( = g [ g o g l ] m r l ') ª1 ª p [ b 1] [ g m g p ] [ ] ª1 b g l [ ] ª b r p b 1 g m g p g o g l g G m F g o G F g o g l Input resistance, R i Output resistance, R o r p r o Ê = 1 ˆ Á Ë g o ª [ b 1]r o [ ]r ' ª r r t p l b 1 [ ] ª r l ª b ª r p [ b 1]R F ª r o R F [ ] [ ] ª g mr F g l [ ] 1 G F g p G F 1 A v Ê r o R F Á = Ë 1 [ ] g o G F ˆ Clif Fonstad, 11/03 Lecture 18 Slide 19

20 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Summary Midband analysis Biasing capacitors: typically in mf range should/can be avoided completely in modern IC design (w LO = 0) Device capacitors: typically in pf range; goal is to make as small as possible Midband: no capacitors in incremental analysis; gain and phase constant want as wide as possible (we won't find w LO and w HI until Lec. 22) Buildingblock stages Common emitter/source: good voltage and current gain large R in and R out good gain stage Common base/gate: very small R in ; very large R out unity current gain; good voltage gain will find paired with other stages to form "cascode" Emitter/source follower: very small R out ; very large R in unity voltage gain; good current gain an excellent output stage or buffer Series feedback: moderate voltage gain dependant on ratio of resistors Shunt feedback: used in transimpedance amplifiers Clif Fonstad, 11/03 Lecture 18 Slide 20

### Half-circuit incremental analysis techniques

6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor

### Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

6.012 - Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter asics - Outline Announcements Handout - Lecture Outline and Summary The MOSFET alpha factor - use definition in lecture,

### Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large

### 6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

### Review - Differential Amplifier Basics Difference- and common-mode signals: v ID

6.012 Microelectronic Devices and Circuits Lecture 20 DiffAmp Anal. I: Metrics, Max. Gain Outline Announcements Announcements D.P.: No Early effect in large signal analysis; just LECs. Lec. 21 foils useful;

### ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

### Electronic Devices and Circuits Lecture 14 - Linear Equivalent Circuits - Outline Announcements

6.012 Electronic Devices and Circuits Lecture 14 Linear Equivalent Circuits Outline Announcements Handout Lecture Outline and Summary Review Adding refinements to large signal models Charge stores: depletion

### Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

### Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

### EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

### ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

### Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

### Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

### Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

6.012 - Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 - Posted on Stellar. Due net Wednesday. Qualitative description - MOS in thermal equilibrium

### Homework Assignment 08

Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

### Biasing the CE Amplifier

Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

### Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

### and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

### Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

### The Gradual Channel Approximation for the MOSFET:

6.01 - Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v

### EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

### Bipolar junction transistor operation and modeling

6.01 - Electronic Devices and Circuits Lecture 8 - Bipolar Junction Transistor Basics - Outline Announcements Handout - Lecture Outline and Summary; Old eam 1's on Stellar First Hour Eam - Oct. 8, 7:30-9:30

### ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

### EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

### CE/CS Amplifier Response at High Frequencies

.. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

### 3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

### ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

### 55:041 Electronic Circuits The University of Iowa Fall Exam 2

Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

### Circle the one best answer for each question. Five points per question.

ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

### 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn

### Electronic Circuits Summary

Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

### MOS Transistor Theory

CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

### 6.012 Electronic Devices and Circuits

Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

### Figure 1: MOSFET symbols.

c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

### GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of

### Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

### 6.012 Electronic Devices and Circuits

Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

### Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

### Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

### The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

### MOS Transistor Properties Review

MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

### EE105 Fall 2014 Microelectronic Devices and Circuits

EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

### ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

### Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

### ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

### The Devices. Jan M. Rabaey

The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

### ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

### Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

### Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

### Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

### Lecture 37: Frequency response. Context

EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

### ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

### EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

### ! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

### ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

### EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

### Lecture 4: CMOS Transistor Theory

Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

### Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

### Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

### University of Toronto. Final Exam

University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

### EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

### Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

### Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

### EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors

### Homework Assignment 09

Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

### Monolithic Microwave Integrated Circuits

SMA5111 - Compound Semiconductors Lecture 10 - MESFET IC Applications - Outline Left over items from Lect. 9 High frequency model and performance Processing technology Monolithic Microwave Integrated Circuits

### 55:041 Electronic Circuits The University of Iowa Fall Final Exam

Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

### KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

### MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

### P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

### University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

### Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 17-1 Lecture 17 - The Bipolar Junction Transistor (I) Contents: Forward Active Regime April 10, 2003 1. BJT: structure and basic operation

### Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

### Lecture 18. Common Source Stage

ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

### Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

### MOS Transistor Theory

MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

### Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and

### Introduction and Background

Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

### EE 330 Lecture 31. Current Source Biasing Current Sources and Mirrors

EE 330 Lecture 31 urrent Source Biasing urrent Sources and Mirrors eview from Last Lecture Basic mplifier Gain Table DD DD DD DD in B E out in B E out E B BB in E out in B E E out in 2 D Q EE SS E/S /D

### ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered

### Feedback Transimpedance & Current Amplifiers

Feedback Transimpedance & Current Amplifiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 1005 141 Table of contents Introduction Shuntshunt FB for Transimpedance

### ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

### MOSFET: Introduction

E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

### Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

### EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

### UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

### Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

### ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

### EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

### 5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS 5.1 Object The objects of this experiment are to measure the spectral density of the noise current output of a JFET, to compare the measured spectral density

### Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

### ECE321 Electronics I

EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman Zarkesh-Ha Office: EE Bldg. 3B Office hours: Tuesday :-3:PM or by appointment E-mail: payman@ece.unm.edu Slide: 1

### Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

### Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

### EECS 105: FALL 06 FINAL

University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

### Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible