FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel

Size: px
Start display at page:

Download "FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel"

Transcription

1 FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel Yogesh S. Chauhan Assistant Professor and Ramanujan Fellow Nanolab, Department of Electrical Engineering IIT Kanpur, India chauhan@iitk.ac.in

2 Acknowledgements BSIM Team Chenming Hu Juan Pablo Duarte Darsen Lu Sourabh Khandelwal My students Chandan Yadav Avirup Dasgupta Tapas Dutta Yogesh S. Chauhan, IIT Kanpur 2

3 About me Joined IIT Kanpur in 2012 Awarded Ramanujan Fellowship (2012) Received IBM Faculty Award (2013) Funding Device characterization laboratory (1.75crore) Upgraded computational infra. Group: Postdoc 3, Ph.D. 9, MTech 8, R.A. 3 Collaboration: >25 companies/universities Publications in last 3 years: 17 journal papers 18 conference papers Yogesh S. Chauhan, IIT Kanpur 3 Lab website

4 Joint Development & Collaboration Working closely with universities/companies on model development and support 03/12/2012 Yogesh S. Chauhan, IIT Kanpur 4

5 Outline Bulk MOSFET and Scaling FinFET and Compact Modeling Unified Compact Model for arbitrary geometry What next? Yogesh S. Chauhan, IIT Kanpur 5

6 IC industry for >40 years Closer distance between elements Pitch Faster signal transfer and processing rate For the same Chip size (or cost), more functionality Mass production Wafer size doubled every 10years. Use less energy (or power) for same function In the last 45 years since 1965 Price of memory/logic gates has dropped 100 million times. The primary engine that powered the proliferation of electronics is miniaturization. More circuits on each wafer cheaper circuits. Miniaturization is key to the improvements in speed and power consumption of ICs. It s not technology! It s economy. Yogesh S. Chauhan, IIT Kanpur 6

7 Why divorce after 40 years? C g Gate Oxide Short Channel Big Problem Source Drain Body C g Gate Oxide Source Drain Q G = Q i +Q b Charge sharing C d Yogesh S. Chauhan, IIT Kanpur 7 Source: Chenming Hu

8 Making Oxide Thin is Not Enough Gate Source Drain Leakage Path Gate cannot control the leakage current paths that are far from the gate. Yogesh S. Chauhan, IIT Kanpur 8

9 MOSFET in sub-22nm era FinFET FDSOI NY Times Yogesh S. Chauhan, IIT Kanpur 9 SOITEC

10 One Way to Eliminate Si Far from Gate Thin body controlled By multiple gates. Gate Length Gate Length Source Gate Drain Source Gate FinFET body is a thin Fin. Drain Fin Height Fin Width N. Lindert et al., DRC paper II.A.6, 2001 Yogesh S. Chauhan, IIT Kanpur 10

11 Transistor Compact Model Technology Is the vehicle of information transfer EDA / Design Fast ~ 10μs / bias point Accurate Robust Crash free for all circuits. ~ 1% error Yogesh S. Chauhan, IIT Kanpur 11

12 Compact Model is Art Based on Science Output Conductance Current Saturation Quantization Gate Current GIDL Current Impact Ionization Current Noise models Mobility and Transport S/D Resistance Gate Resistance Short Channel Effects Core Overlap Capacitances Fringe Capacitances Inversion Layer Thickness Non-Quasi-Static Effects Substrate RC Network Parasitic Diode, BJT Self Heating Temperature Effects Proximity Effects Random Variations Y. S. Chauhan et.al., BSIM6: Analog and RF Compact Model for Bulk MOSFET, IEEE TED, Yogesh S. Chauhan, IIT Kanpur 12

13 BSIM-CMG: Industry standard FinFET model Selected as Industry standard 2012 FinFETs on Bulk and SOI Substrates Yogesh S. Chauhan, IIT Kanpur 13

14 BSIM-CMG Common Multi-gate (BSIM-CMG): All gates tied together Surface-potential-based core I-V and C-V model Supports double-gate, triple-gate, quadruple-gate, cylindrical-gate; Bulk and SOI substrates Y. S. Chauhan et. al., Workshop on Compact Modeling, 2011, Boston. Yogesh S. Chauhan, IIT Kanpur 14

15 Verification: 30nm to 10µm FinFETs 0.25 Each curve is for one Lg Symbols: Data; Lines: BSIM-CMG Model Drain Current(mA) L g Gate Voltage(V) Gm (ma/v) Yogesh S. Chauhan, IIT Kanpur 15 L g Gate Voltage(V)

16 g m` & g m`` of 30nm to 10µm FinFETs Yogesh S. Chauhan, IIT Kanpur 16

17 Temperature Model verified for FinFET Yogesh S. Chauhan, IIT Kanpur 17

18 FinFET s Various Complex Cross-Sections TSMC, IEDM 2010 Leti, VLSI 2012 IBM, VLSI 2012 Toshiba, VLSI 2012 Yogesh S. Chauhan, IIT Kanpur 18

19 Prior Models Available for Two Simple Cross-Sections Only Deductive model 1. Double-Gate FinFET: Charge Equation : 2. Cylindrical FinFET: Charge Equation: Yogesh S. Chauhan, IIT Kanpur 19

20 New Unified Model for Complex FinFET v O v Cross-Sections Inductive model = G v FB Model Parameters: Fin Area: v O q dep v CH A ch Channel Doping:N ch Channel Width: W Insulator Cap: C ins = q 2qn vt C m A + ln t ( q ) m + ln qt e qt 1 2 i ch ch ins ln qt = ( qm + qdep ) 2 insnch ε chw Unified Model for various Fin shapes SEM or imagined Yogesh S. Chauhan, IIT Kanpur 20 q 2 A C

21 Even FinFET with this fin shape Electron Concentration BSIM-FET MODEL TCAD Gate Voltage (V) J. P. Duarte et. al., SRC TECHCON Yogesh S. Chauhan, IIT Kanpur 21

22 Experimental FinFET Example: I-V SOI FinFET SOI FinFET L G = 10 µm SOI FinFET L G = 10 µm SOI FinFET L G = 10 µm SOI FinFET L G = 10 µm Drain Current V ds = 1 V g m V ds = 1 V Drain Current V g = 0.2~1 V g DS V g = 0.2~1 V V ds = 0.05 V V ds = 0.05 V Gate Voltage (V) *FinFET fabricated by SEMATECH Gate Voltage (V) Drain Voltage (V) Drain Voltage (V) Yogesh S. Chauhan, IIT Kanpur 22

23 BSIM-CMG Model Speed Improvement Model Speed Improvement ~ 30% New core model used in BSIM-CMG109 Yogesh S. Chauhan, IIT Kanpur 23

24 3D Model for Short Channel Effects SCEs are 3-D effects Need to solve the 3-D Poisson s equation. DIBL Equations: λλ: characteristic field penetration length Unified λ K. Suzuki, EDL 1996 C. P. Auth, EDL 1997 Yogesh S. Chauhan, IIT Kanpur 24

25 TCAD FinFET Example: I-V: Scaling Drain Current (A) Bulk FinFET Lines: Model 3 Symbols: TCAD V ds = 0.05 V L = 1000,500, G 100,75,50 nm x Gate Voltage (V) Yogesh S. Chauhan, IIT Kanpur 25

26 Experimental FinFET on Bulk Example: New QM Effects + Body Bias model Lines: Old BSIM-CMG Lines: New BSIM-CMG 8 x QM Improvement 5 Cgg Bulk effect Improvement Vg Yogesh S. Chauhan, IIT Kanpur 26

27 State-of-the-Art 14nm FinFET Taller and Thinner Fins for increased drive current and performance 4/8/2018 Yogesh S. Chauhan, IIT Kanpur 27 Source: Anandtech

28 Future 10nm and beyond Source: Applied Materials Yogesh S. Chauhan, IIT Kanpur 28

29 Key points for 10nm and beyond Reduced leakage Better sub-threshold slope Ultra-thin channel Electrostatic control Nanowire transistor Higher mobility channel Si NMOS and PMOS Ge PMOS SiGe III-V materials NMOS InAs, InGaAs etc. I I off dsat ( na) W = Coxµ 2L W = L eff ( V gs V S V t TH 2 ) Yogesh S. Chauhan, IIT Kanpur 29

30 InGaAs FinFET Modeling BSIM-CMG with the new Quantum Effects model used to model InGaAs FinFETs L = 20 nm, H = 30 nm, W = 20 nm, Nfin = 4. S. Khandelwal, J. P. Duarte, N. Paydavosi, Y. S. Chauhan, J. J. Gu, M. Si, P. D. Ye, and C. Hu, "InGaAs FinFET Modeling Using Industry Standard Compact Model BSIM-CMG", Workshop on Compact Modeling, Yogesh S. Chauhan, IIT Kanpur 30

31 InGaAs FinFET Modeling L = 20 nm, H = 30 nm, W = 20 nm, Nfin = 4. Data from: J. J. Gu et al. IEDM 2012 Yogesh S. Chauhan, IIT Kanpur 31

32 InGaAs FinFETs with Triangular Cross-section T. Irisawa et al. IEDM 2013 Importance of accurate modeling of Quantum Effects Yogesh S. Chauhan, IIT Kanpur 32

33 Modeling of Germanium Ge FinFET may be used in 10nm node for better P-FinFET. Industry standard BSIM FinFET model can now model Ge FinFET. Early availability of a unified Si/Ge FinFET model facilitates technology-circuits codevelopment. Yogesh S. Chauhan, IIT Kanpur 33

34 Modeling Germanium FinFETs User selectable MOD to model Ge FinFETs Material Mode MTRLMOD = Si (Default) or Ge MTRLMOD =Ge invokes new mobility model for Ge MTRLMOD = Ge sets key parameters for Ge Band-Gap, Mobility MTRLMOD=Ge model verified with experimental data Excellent Model Calibration Results Scalable Ge FinFET Model Yogesh S. Chauhan, IIT Kanpur 34

35 Germanium Mobility Model Due to the lower m* of holes in Ge the charge-centroid is farther away from the oxide interface resulting in a weaker SR scattering. Ge mobility has a weaker dependence on E eff up-to 0.5 MV/cm as the impact of SR scattering is only seen at much higher E eff in Ge as compared to Si. Yogesh S. Chauhan, IIT Kanpur 35

36 BSIM-CMG Model Results for Ge pfinfets L = 130 nm S. Khandelwal et. al., "Modeling 20nm Germanium FinFET with the Industry Standard FinFET Model", IEEE Electron Device Letters, Vol. 35, Issue 7, July Yogesh S. Chauhan, IIT Kanpur 36

37 BSIM-CMG Model Scalability for Ge pfinfets L increasing L varying from 20 nm to 90 nm Scalable Model Yogesh S. Chauhan, IIT Kanpur 37

38 Forward Looking Modeling of Pillar/Nanowire FET Vertical Pillar FET Yogesh S. Chauhan, IIT Kanpur 38

39 Validation on Asymmetric Nanowire FET Symbols experimental data Ids-Vgs for N-type Nanowire for different temperatures S. Venugopalan et. al., "Modeling Intrinsic and Extrinsic Asymmetry of 3D Cylindrical Gate/ Gate-All-Around FETs for Circuit Simulations", IEEE Non-Volatile Memory Technology Symposium, Shanghai, China, Nov Yogesh S. Chauhan, IIT Kanpur 39

40 Modeling of III-V FinFET Chandan Yadav et. al., Modeling of GaN-Based Normally-Off FinFET, IEEE Electron Device Letters, June Yogesh S. Chauhan, IIT Kanpur 40

41 7nm & beyond Would it be a smooth ride? Effects in ultra-thin Si/Ge/III-V Transistors Quantum Capacitance Charge centroid Source to Drain Tunneling Bandgap variation with thickness Effective mass variation with thickness Yogesh S. Chauhan, IIT Kanpur 41

42 Quantum Capacitance Concept of the quantum capacitance was given by S. Luryi, which originates when vertical electric field partially penetrates the inversion charge in channel. The quantum capacitance depends on 2-D density of states ρρ 2DD = mm ππħ and valley degeneracy factor (g 2 v. ) Quantum Capacitance CC QQ = qq2 gg vv mm ππħ 2 Yogesh S. Chauhan, IIT Kanpur 42

43 Quantum Capacitance Thin body device is a 2D system. E 3 E 2 E 1 C. Yadav et. al., submitted in Solid State Electronics. Yogesh S. Chauhan, IIT Kanpur 43

44 Quantum Capacitance & III-V Very strong impact on gate capacitance with low effective mass channel Yogesh S. Chauhan, IIT Kanpur 44

45 Charge centroid Charge centroid in conjunction with Quantum capacitance can deteriorate C-V further. Yogesh S. Chauhan, IIT Kanpur 45

46 Modeling of Quantum Capacitance in III-V FinFET Avirup Dasgupta et. al., Modeling of Quantum Capacitance in III-V Transistors, being submitted in IEEE EDL. Yogesh S. Chauhan, IIT Kanpur 46

47 Source to Drain Tunneling in III-V FETs Under the barrier transport T. Dutta et. al., Source to Drain Tunneling in III-V MOSFETs, submitted in IEEE Electron Device Letters. Yogesh S. Chauhan, IIT Kanpur 47

48 Modeling SiGe FinFETs with Thin Fin Current Dependent Source/Drain Resistance S. Khandelwal et. al., submitted in IEEE Electron Device Letters. Yogesh S. Chauhan, IIT Kanpur 48

49 High Mobility channel Different materials for NMOS and PMOS Complex integration NMOS III-V materials NMOS InAs, InGaAs etc. PMOS Ge PMOS SiGe Bulk mobility of Ge = 4000 > Si 1450 cm^2/v-s How about using Ge based CMOS? Yogesh S. Chauhan, IIT Kanpur 49

50 First Experimental Demonstration of Ge CMOS Circuits from Purdue (IEDM 2014) NMOS PMOS H. Agarwal et. al., Modeling of Ge MOSFETs Using Industry Standard Model and Experimental CMOS Circuit Validation, submitted in IEEE Electron Yogesh Device S. Chauhan, Letters. IIT Kanpur 50

51 BSIM-IMG vs. Experimental Ge circuit Ge CMOS Inverter VTC H. Agarwal et. al., Modeling of Ge MOSFETs Using Industry Standard Model and Experimental CMOS Circuit Validation, submitted in IEEE Electron Yogesh Device S. Chauhan, Letters. IIT Kanpur 51

52 FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard Authors Yogesh Singh Chauhan, IITK Darsen D Lu, IBM Navid Payvadosi, Intel Juan Pablo Duarte, UCB Sriramkumar Vanugopalan, Samsung Sourabh Khandelwal, UCB Ai Niknejad, UCB Chenming Hu, UCB Chapters 1. FinFET- from Device Concept to Standard Compact Model 2. Analog/RF behavior of FinFET 3. Core Model for FinFETs 4. Channel Current and Real Device Effects 5. Leakage Currents 6. Charge, Capacitance and Non-Quasi-Static Effect 7. Parasitic Resistances and Capacitances 8. Noise 9. Junction Diode Current and Capacitance 10. Benchmark tests for Compact Models 11. BSIM-CMG Model Parameter Extraction 12. Temperature Effects Available online on Elsevier. 4/8/2018 Yogesh S. Chauhan, IIT Kanpur 52

53 Relevant Publications H. Agarwal, P. Kushwaha, S. Khandelwal, J. P. Duarte, Y.-K. Lin, H.-L. Chang, C. Hu, H. Wu, P. D. Ye and Y. S. Chauhan, "Modeling of GeOI and Validation with Ge-CMOS Inverter Circuit using BSIM-IMG Industry Standard Model", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, Aug C. Yadav, A. Agarwal, and Y. S. Chauhan, "Analysis of Quantum Capacitance Effect in Ultra-Thin-Body III-V Transistor", IEEE International Conference on VLSI Design, Kolkata, India, Jan C. Yadav, J. P. Duarte, S. Khandelwal, A. Agarwal, C. Hu, and Y. S. Chauhan, "Capacitance Modeling in III-V FinFETs", IEEE Transactions on Electron Devices, Vol. 62, Issue 11, Nov S. Khandelwal, J. P. Duarte, A. Medury, Y. S. Chauhan, S. Salahuddin, and C. Hu, "Modeling SiGe FinFETs with Thin Fin and Current Dependent Source/Drain Resistance", IEEE Electron Device Letters, Vol. 36, Issue 7, July C. Yadav, A. Agarwal, and Y. S. Chauhan, "Compact Modeling of Charge Density and Capacitance in III-V channel Double Gate FETs", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec A. Dasgupta, A. Agarwal, and Y. S. Chauhan, "Compact Model for charge centroid in III-V FETs", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec A. Dasgupta, A. Agarwal, and Y. S. Chauhan, "Compact Modeling of Quasi-Ballistic transport in FETs", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec T. Dutta, M. Agrawal, A. Agarwal and Y. S. Chauhan, "Wavefunction Penetration Effects in Extremely Scaled III-V MOSFETs", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec J. P. Duarte, S. Khandelwal, A. Medury, C. Hu, P. Kushwaha, H. Agarwal, A. Dasgupta, and Y. S. Chauhan "BSIM-CMG: Standard FinFET Compact Model for Advanced Circuit Design", IEEE European Solid-State Circuit Conference (ESSCIRC), Graz, Austria, Sept (Invited) C. Yadav, A. Agarwal, Y. S. Chauhan, "Simulation study of gate capacitance with back bias effects in III-V UTB devices", SRC TECHCON, Austin, USA, September S. Khandelwal, J. P. Duarte, A. Medury, Y. S. Chauhan, and C. Hu, "New Industry Standard FinFET Compact Model for Future Technology Nodes", IEEE VLSI Technology symposium, Kyoto, June C. Yadav, P. Kushwaha, S. Khandelwal, J. P. Duarte, Y. S. Chauhan, and C. Hu, "Modeling of GaN based Normally-off FinFET", IEEE Electron Device Letters, Vol. 35, Issue 6, June S. Khandelwal, J. P. Duarte, Y. S. Chauhan, and C. Hu, "Modeling 20nm Germanium FinFET with the Industry Standard FinFET Model", IEEE Electron Device Letters, Vol. 35, Issue 7, July C. Yadav, P. Kushwaha, H. Agarwal, and Y. S. Chauhan, "Threshold Voltage Modeling of GaN Based Normally-Off Tri-gate Transistor", IEEE India Conference (INDICON), Pune, India, Dec A. Dasgupta, C. Yadav, P. Rastogi, A. Agarwal, and Y. S. Chauhan, "Analysis and Modeling of Quantum Capacitance in III-V Transistors", IEEE International Conference on Emerging Electronics (ICEE), Bangalore, India, Dec (Best Poster Award) S. Khandelwal, J. P. Duarte, N. Paydavosi, Y. S. Chauhan, J. J. Gu, M. Si, P. D. Ye, and C. Hu, "InGaAs FinFET Modeling Using Industry Standard Compact Model BSIM-CMG", Workshop on Compact Modeling (WCM), Washington D.C., USA, June N. Paydavosi, S. Venugopalan, Y. S. Chauhan, J. P. Duarte, S. Jandhyala, A. M. Niknejad, and C. Hu, "BSIM - SPICE Models Enable FinFET and UTB IC Designs", IEEE Access, May Y. S. Chauhan, S. Venugopalan, N. Paydavosi, P. Kushwaha, S. Jandhyala, J. P. Duarte, S. Agnihotri, C. Yadav, H. Agarwal, A. Niknejad, and C. Hu, "BSIM Compact MOSFET Models for SPICE Simulation", IEEE International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Gdynia, Poland, June (Invited) Y. S. Chauhan, S. Venugopalan, M. A. Karim, S. Khandelwal, N. Paydavosi, P. Thakur, A. M. Niknejad, and C. C. Hu, "BSIM - Industry Standard Compact MOSFET Models", IEEE European Solid-State Device Research Conference (ESSDERC), Bordeaux, France, Sept (Invited) Yogesh S. Chauhan, IIT Kanpur 53

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

Compact Modeling of Semiconductor Devices: MOSFET

Compact Modeling of Semiconductor Devices: MOSFET Compact Modeling of Semiconductor Devices: MOSFET Yogesh S. Chauhan Assistant Professor and Ramanujan Fellow Nanolab, Department of Electrical Engineering IIT Kanpur Email: chauhan@iitk.ac.in Homepage

More information

BSIM: Industry Standard Compact MOSFET Models

BSIM: Industry Standard Compact MOSFET Models BSIM: Industry Standard Compact MOSFET Models Y. S. Chauhan 1,, S. Venugopalan, M. A. Karim, S. Khandelwal, N. Paydavosi, P. Thakur, A. Niknejad and C. Hu 1 IIT Kanpur, India UC Berkeley, USA Sept. 19

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

Physics and Modeling of Negative Capacitance Transistors

Physics and Modeling of Negative Capacitance Transistors Physics and Modeling of Negative Capacitance Transistors Yogesh Singh Chauhan Nanolab, Department of Electrical Engineering IIT Kanpur, India Email: chauhan@iitk.ac.in Homepage http://home.iitk.ac.in/~chauhan/

More information

The PSP compact MOSFET model An update

The PSP compact MOSFET model An update The PSP compact MOSFET model An update Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen NXP Semiconductors Ronald van Langevelde Philips Research Europe Gennady Gildenblat, Weimin Wu, Xin Li, Amit Jha,

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model BSIM-CMG Model Why BSIM-CMG Model When we reach the end of the technology roadmap for the classical CMOS, multigate (MG) CMOS structures will likely take up the baton. Numerous efforts are underway to

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Physics-based compact model for ultimate FinFETs

Physics-based compact model for ultimate FinFETs Physics-based compact model for ultimate FinFETs Ashkhen YESAYAN, Nicolas CHEVILLON, Fabien PREGALDINY, Morgan MADEC, Christophe LALLEMENT, Jean-Michel SALLESE nicolas.chevillon@iness.c-strasbourg.fr Research

More information

Negative Capacitance MOSFETs for Future Technology Nodes

Negative Capacitance MOSFETs for Future Technology Nodes Negative Capacitance MOSFETs for Future Technology Nodes Yogesh Singh Chauhan Nanolab, Department of Electrical Engineering IIT Kanpur, India Email: chauhan@iitk.ac.in Homepage http://home.iitk.ac.in/~chauhan/

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 11: MOSFET Modeling

Lecture 11: MOSFET Modeling Digital Integrated Circuits (83-313) Lecture 11: MOSFET ing Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) The Future of CMOS David Pulfrey 1 CHRONOLOGY of the FET 1933 Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) 1991 The most abundant object made by mankind (C.T. Sah) 2003 The 10 nm FET

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Ultra-Scaled InAs HEMTs

Ultra-Scaled InAs HEMTs Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim 2,3, Jesús. A. del Alamo 2, and Mathieu Luisier 1 1 Network for Computational ti Nanotechnology and Birck

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

Ultimately Scaled CMOS: DG FinFETs?

Ultimately Scaled CMOS: DG FinFETs? Ultimately Scaled CMOS: DG FinFETs? Jerry G. Fossum SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130 J. G. Fossum / 1 Outline Introduction -

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Prospects for Ge MOSFETs

Prospects for Ge MOSFETs Prospects for Ge MOSFETs Sematech Workshop December 4, 2005 Dimitri A. Antoniadis Microsystems Technology Laboratories MIT Sematech Workshop 2005 1 Channel Transport - I D I D =WQ i (x 0 )v xo v xo : carrier

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

ENABLEMENT OF COMPACT MODELS FOR

ENABLEMENT OF COMPACT MODELS FOR ENABLEMENT OF COMPACT MODELS FOR ULTRA-SCALED CMOS TECHNOLOGIES D. YAKIMETS, P. SCHUDDINCK, D. JANG, M. GARCIA BARDON, N. SHARAN, B. PARVAIS*, P. RAGHAVAN, AND A. MOCUTA IMEC, KAPELDREEF 75, 3001 LEUVEN,

More information

A Verilog-A Compact Model for Negative Capacitance FET

A Verilog-A Compact Model for Negative Capacitance FET A Verilog-A Compact Model for Negative Capacitance FET Version.. Muhammad Abdul Wahab and Muhammad Ashraful Alam Purdue University West Lafayette, IN 4797 Last Updated: Oct 2, 25 Table of Contents. Introduction...

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS

ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS Gerard Uriarte, Wondwosen E. Muhea, Benjamin Iñiguez Dep. of Electronic Engineering, University Rovira i Virgili, Tarragona (Spain) Thomas Gneiting AdMOS

More information

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1 Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W fin =20nm) with High Mobility (μ Hole =700 cm 2 /Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate A. Agrawal 1, M. Barth 1, G. B. Rayner

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport 2011 Workshop on Compact Modeling Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport Christian Enz 1,2, A. Mangla 2 and J.-M. Sallese 2 1) Swiss Center for Electronics

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

Erik Lind

Erik Lind High-Speed Devices, 2011 Erik Lind (Erik.Lind@ftf.lth.se) Course consists of: 30 h Lectures (H322, and Fys B check schedule) 8h Excercises 2x2h+4h Lab Excercises (2 Computer simulations, 4 RF measurment

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

MOSFET SCALING ECE 663

MOSFET SCALING ECE 663 MOSFET SCALING Scaling of switches Moore s Law economics Moore s Law - #DRAM Bits per chip doubles every 18 months ~5% bigger chips/wafers ~5% design improvements ~50 % Lithography ability to print smaller

More information

Faculty Presentation: Novel Technologies

Faculty Presentation: Novel Technologies 2009 IMPACT Workshop Faculty Presentation: Novel Technologies Chenming Hu, EECS Department, UC Berkeley Tsu-Jae King Liu, EECS Department, UC Berkeley Eugene Haller, MS&E Department, UC Berkeley Nathan

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout B.Doyle, J.Kavalieros, T. Linton, R.Rios B.Boyanov, S.Datta, M. Doczy, S.Hareland, B. Jin, R.Chau Logic Technology Development Intel

More information

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Bhadrinarayana L V 17 th July 2008 Microelectronics Lab, Indian

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Analysis of Ultra-Scaled InAs HEMTs Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche Birck Nanotechnology Center and Purdue University,

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

Nanometer Transistors and Their Models. Jan M. Rabaey

Nanometer Transistors and Their Models. Jan M. Rabaey Nanometer Transistors and Their Models Jan M. Rabaey Chapter Outline Nanometer transistor behavior and models Sub-threshold currents and leakage Variability Device and technology innovations Nanometer

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Physics and Modeling of FinFET and UTB-SOI MOSFETs

Physics and Modeling of FinFET and UTB-SOI MOSFETs 2017 Symposium on Nano Device Technology Session 1: Nano Devices and New Materials Physics and Modeling of FinFET and UTB-SOI MOSFETs -- using BSIM-MG as example Speaker: Darsen Lu, Assistant Prof. darsenlu@mail.ncku.edu.tw

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

The HV-EKV MOSFET Model

The HV-EKV MOSFET Model The HV-EKV MOSFET Model Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland EPFL Team Yogesh Singh Chauhan, Costin Anghel, Francois Krummenacher, Adrian Mihai Ionescu and Michel Declercq CMC Meeting,

More information

mobility reduction design rule series resistance lateral electrical field transversal electrical field

mobility reduction design rule series resistance lateral electrical field transversal electrical field Compact Modelling of Submicron CMOS D.B.M. Klaassen Philips Research Laboratories, Eindhoven, The Netherlands ABSTRACT The accuracy of present-day compact MOS models and relevant benchmark criteria are

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost! Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and

More information

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability Journal of Computational Electronics 3: 165 169, 2004 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Computational Model of NBTI and Hot Carrier Injection Time-Exponents

More information

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University Acknowledgments: Abigail Lubow, Xiao Sun, Shufeng Ren Switching Speed of CMOS

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

The Prospects for III-Vs

The Prospects for III-Vs 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Jamie Teherani Collaborators: Paul Solomon (IBM), Mathieu Luisier(Purdue) Advisors: Judy Hoyt, DimitriAntoniadis

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

Philips Research apple PHILIPS

Philips Research apple PHILIPS c Electronics N.V. 1997 Modelling Compact of Submicron CMOS D.B.M. Klaassen Research Laboratories The Netherlands Eindhoven, contents accuracy and benchmark criteria new applications í RF modelling advanced

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

Technology Development for InGaAs/InP-channel MOSFETs

Technology Development for InGaAs/InP-channel MOSFETs MRS Spring Symposium, Tutorial: Advanced CMOS Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information