Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components


 Kerry Antony Gilbert
 3 years ago
 Views:
Transcription
1 Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the professors who created such good works onthose lecture notes. Without them, these slides could have not been presented to you. 2
2 CMOS Technology 3 HDD: Shallow Highdoped drain (no LDD) Scaling LDD: Lightly Doped Drain Reduce hot carrier effects Introduction ti 4
3 Dynamic Power Consumption 5 Power Consumption Static Power (no input/output change) 1. Leakage current. 2. Subthreshold conductance. 3. PseudoNMOS has a static current (direct current path between supply and ground) when output is low. Dynamic Power (during input/output change) 1. Capacitive Power due to charging/discharging of capacitive load. Note that sometimes only refer to this component as the dynamic power. 2. Shortcircuit power due to direct path currents when there is a temporary connection between power and ground. Note that sometimes only refer to this component as the short circuit power. 6
4 Dynamic Power Dissipation i P 0 1 & P 1 0 i out v out 7 Dynamic Power Consumption 8
5 Lowering Dynamic Power 9 Dissipated i Energy Charging: E dis0 1 =E Vdd E C =C L.V dd2 /2 Discharging: E dis1 0 =E C 0=C L.V dd2 /2 Total dissipation E dis1 0 +E dis1 0 = C L.V dd 2 10
6 Dynamic Power Dissipation i P dynamic = C L.V DD2.f y Assume P 0 1 for all gates 1. Example 1.2 μm CMOS chip 100 MHz clock rate Average load capacitance of 30 ff/gate 5V power supply Power consumption/gate = 75 μw Design with 200, gates: 15W! Pessimistic evaluation: not all gates switch at the full rate Reducing V DD has a quadratic effect on P dynamic 11 Node Transition Activity it (Switching Activity it Factor) Consider switching a CMOS gate for N clock cycles E = C V N L 2 nn dd ( ) E N : the energy consumed for N clock cycles n(n): the number of 0>1 transition in N clock cycles P = lim avg N E N N f clk = nn lim ( ) 2 C N N V dd fclk L α 0 1 = n( N lim ) N N P avg = α 0 1 C L V dd 2 fclk 12
7 Pi Principles il for Dynamic Power Reduction Rd 13 Dynamic Power Consumption is Data Dependent 14
8 NOR Gate Transition Probabilities biliti 15 Transition Probabilities biliti for Some Basic Gates P 0 at the inverter input is equal to P 1 at its output. 16
9 Transition Probabilities biliti as a Function of Input Numbers Note: XOR n (x 1, x 2,...,x n ) = x 1 x 2... x n 17 InterSignal Correlations 18
10 InterSignal Correlations P(Z=1) = = 0.5 X 19 Become complex and intractable fast! Logic Restructuring t 20
11 Logic Restructuring t Chain Tree 21 Input ReOrdering Od Worse Better 22
12 Input ReOrdering Od P X (1) = P A (1).P B (1) = 0.1 P X (0) = 1 P X (1) = 0.9 P X (0 1)= P F (1) = P X (1).P C (1) = 0.01 P F (0 1) = P X (1) = P A (1).P B (1) = 0.02 P X (0) = 1 P X (1) = 0.98 P X (0 1)= P F (1) = P X (1).P C (1) = 0.01 P F (0 1) = Glitching in Static ti CMOS Networks 24
13 Glitching in Static ti CMOS Networks Glitch 25 Spurious Transition at a Node Glitching Power 26
14 Example: Glitching in an Ripple Carry Adder (RCA) Complete Charge Complete Discharge Time (ns) Ripple carry adder generates the carry of each bit based on the sum of the previous bits. 27 Balanced Delay Paths to Reduce Glitching 28
15 Solution: Balanced Delay Paths The diagrams only schematically shows the idea behind each type of adder. Carry lookahead adder generates the carry of each bit based on the previous bits without waiting for the sum of the previous bits to propagate Make the delay of all carry almost the same 29 Factors Affecting Transition Activity: it α 0 1 # of inputs (Type and style) 30
16 Short Circuit it Currents I SC is determined by the two voltages of the n and p transistors: 1) V GS (t) is a function of the input slope. Determines on/off state of the transistors. 2) V DS (t) is a function of the output slopedetermined by C L. Determines the region of operation (linear/saturation) of the transistors. Note: The current used for charging the capacitor is not wasted. 31 Short Circuit it Currents I mean is the average short circuit current for one period that the output make a transition. 32
17 Symmetrical Inverter Without t Load 33 Symmetrical Inverter Without t Load 34
18 Short Circuit it Currents I mean = I peak.t sc /T mean peak sc determines t sc. 35 Output t Transitions under Different tloads 5 36
19 Impact of fc L on P sc C L remain short circuit till the end of the C L quickly becomes open circuit and input transition. (Bad for cascaded logic) the current is determined by the ratio of The current used for discharging the the two transistors onresistances. Since capacitance is not considered as the short this current is not used in charging the circuit current. capacitor, it is wasted 37 I peak as a Function of fc L 38
20 ShortCircuit it Current Short circuit current goes to zero if t fall(output) >> t rise(input) But cannot do this for cascaded logic Keep input and output rise/fall times the same Less than 10% of the total consumption For small C L s (less dynamic power), the power is mainly due to short circuit current 39 Short Circuit it Current Conclusions: Vd d If inverter is lightly loaded (small C L, so output t r, t f Vin Vout are shorter than input t r,t f then P SC becomes comparable to dynamic dissipation C L When input and output have equal rise and fall times, P SC is small Must make input t r, t f equal to output t t r, t f. I VDD (ma) V in (V)
21 P sc as a Function of Rise/Fall Times (P sc /P sc0 ) (P sc0 ) 41 Static ti Power Consumption Vdd I stat V out V in =5V C L P stat = P (In=1).V dd. I stat Wasted energy Should be avoided almost in all cases. 42
22 Leakage Components of the Static Power Dissipation 1. pn junction reverse bias current 2. Weak inversion 3. Draininduced i d barrier lowering (DIBL) 4. Gateinduced drain leakage (GIDL) 5. Punchthrough 6. Narrow width effect (for trench isolation) 7. Gate oxide tunneling 8. Hot carrier injection 43 Subthreshold h (Weak Inversion)/Reversed Biased PN Junction Currents db (PMOS) pn junction: V db = 0 db (NMOS) pn junction : V db = V DD Long channel model if V t does not contain DIBL effect. 44
23 Reverse Biased pn Junction Leakage current through the reverse biased diode junctions For typical devices it is between 10pA 500pA at room temperature For a die with 1 million devices operated at 5 V, this results in 0.5mW power consumption not much Junction leakage current is caused by thermally generated carriers therefore is a strong function of temperature (J S doubles for every 9 deg C!) For 0.25 μm CMOS: J S = pa/ μm 2 at 25 deg C. GATE p + p+ N +  V dd I DL = J S A Reverse Leakage Current 45 Subthreshold Leakage Component The subthreshold leakage is very important when the threshold voltage is close to 0. Subthreshold current is one of most compelling issues in lowenergy circuit design! 46
24 Leakage as a Function of fv T 47 Gate Oxide Tunneling Not correct dimension (see next slide ox1 I ) I GD 48
25 HighE ox electric field across oxide layer causes: Direct electron tunneling through gate I ox1 e e ct ox dv ox FowlerNordheim (FN) tunneling through oxide bands (usually only at higher E ox than chips use) I ox2 = AE 2 ox e b / E ox Currently is a nonissue, expected to become dominant leakage condition as oxides get thinner Gate Oxide Tunneling 49 Temperature Dependence of fthese Components 50
26 GateInduced ddrain Leakage (GIDL) High field between gate and drain (small gate and large drain voltages) increases the holeelectron generation injecting holes into substrate and electron into the drain substrate leakage and drain current increase. Some electrons tunnel from gate to drain using surface traps and/or bandtoband tunneling. gate leakage and drain current increase. This component is not considered as GIDL. Depletion due to MIS structure of Gate/Oxide/Drain (LDD) 51 GateInduced ddrain Leakage (GIDL) Increasing current for negative V G values Localized along channel width between gate and drain Major problem in I off current: Caused by thinner t ox, higher V DD, and lightly doped drains. Contributes to standby power, so must control this by increasing oxide thickness, increasing drain doping, or eliminating traps. For high performance device (low V th ), is not a major issue. 52
27 DrainInduced d BarrierLowering i (DIBL) Depletion region of drain interacts with source near channel surface Voltage at the drain lowers the potential barrier at the source Lowers V Th Increases subthreshold current without any change ons Causes source to inject carriers into channel surface independent of the gate voltage More DIBL at higher V D and shorter L eff Moves curve up, to right, as V D increases SurfaceDIBL happens before deep bulk punchthrough Fix DIBL: Higher surface & channel doping Shallow source/drain junction depths 53 Punchthrough h Happens when drain and source depletion regions approach each other and touch. Letschannel current exist deep in subgate region and in the surface Gate loses control of subgate region. Variesquadratically with V D and with V S. Viewed as subsurface (deep in bulk) version of DIBL 54
28 Trench isolation: NarrowWidth Effect Dig trench in substrate and fill with SiO 2 to isolate n and p MOSFETs Nontrench isolated technologies (LOCOS): V t increases for gate widths of 0.5 μm Trench isolated technologies: V t decreases for effective channel widths W 0.5 μm 55 DIBL, GIDL, Weak Inversion DIBL Moves curve up, to right as V D increases V D going from 0.1 to 2.7 V, I D changed 1.68 decades 1.55V/decade change of I D Large V G s means less GIDL 56
29 Leakage Components GIDL dominates DIBL dominates Weak inversion dominates 57 CMOS Energy & Power Equations t leakage t leakage /T 58
Power Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More informationEE241  Spring 2000 Advanced Digital Integrated Circuits. Announcements
EE241  Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low PowerLow Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks  3/7 by 5pm
More informationWhere Does Power Go in CMOS?
Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking
More informationLast Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8
EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»
More informationAnnouncements. EE141 Spring 2003 Lecture 8. Power Inverter Chain
 Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :303pm at BWRC (in lieu of Tuesday) Today s lecture Power
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationLecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD
More informationLecture 81. Low Power Design
Lecture 8 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas Email: k.masselos@ic.ac.uk Lecture 81 Based on slides/material
More informationL ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling
L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation
More informationEE241  Spring 2001 Advanced Digital Integrated Circuits
EE241  Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design SelfResetting Logic Signals are pulses, not levels 1 SelfResetting Logic SenseAmplifying Logic Matsui, JSSC 12/94 2
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption
EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges
More informationDynamic operation 20
Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69
More informationCSE493/593. Designing for Low Power
CSE493/593 Designing for Low Power Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.].1 Why Power Matters Packaging costs Power supply rail design Chip and system
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationLecture 5: CMOS Transistor Theory
Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos IV Characteristics
More informationDesign for Manufacturability and Power Estimation. Physical issues verification (DSM)
Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationChapter 5 MOSFET Theory for Submicron Technology
Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are
More informationCMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power
CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 14: Designing for Low Power [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12 CMPEN
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 1  The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM
More informationChapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter
Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter
More informationLecture #27. The Short Channel Effect (SCE)
Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )
More informationThe Physical Structure (NMOS)
The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationDigital Integrated Circuits 2nd Inverter
Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationDigital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo
Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationDKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction
DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction Saraju P. Mohanty Dept of Computer Science and Engineering University of North Texas smohanty@cs.unt.edu http://www.cs.unt.edu/~smohanty/
More informationDigital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories
Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification
More informationVLSI Design The MOS Transistor
VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV
More informationChapter 2 CMOS Transistor Theory. JinFu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 CMOS Transistor Theory JinFu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor JinFu Li, EE,
More informationLong Channel MOS Transistors
Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to MetalOxideSemiconductor FieldEffect transistors (MOSFET) by considering the following structure:
More informationSemiconductor Memories
Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian
More informationThe Devices. Jan M. Rabaey
The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ualwell TrenchIsolated
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft
ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated
More informationDigital Integrated Circuits A Design Perspective
Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationLecture 16: Circuit Pitfalls
Introduction to CMOS VLSI Design Lecture 16: Circuit Pitfalls David Harris Harvey Mudd College Spring 2004 Outline Pitfalls Detective puzzle Given circuit and symptom, diagnose cause and recommend solution
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationEE241  Spring 2005 Advanced Digital Integrated Circuits. Admin. Lecture 10: Power Intro
EE241  Spring 2005 Advanced Digital Integrated Circuits Lecture 10: Power Intro Admin Project Phase 2 due Monday March 14, 5pm (by email to jan@eecs.berkeley.edu and huifangq@eecs.berkeley.edu) Should
More informationEEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring
More informationLECTURE 3 MOSFETS II. MOS SCALING What is Scaling?
LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and
More informationMOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA
MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the FieldEffect Transistor! Julius Lilienfeld filed a patent describing
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More informationLecture 16: Circuit Pitfalls
Lecture 16: Circuit Pitfalls Outline Variation Noise Budgets Reliability Circuit Pitfalls 2 Variation Process Threshold Channel length Interconnect dimensions Environment Voltage Temperature Aging / Wearout
More informationEECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders
EECS 47 Lecture 11: Power and Energy Reading: 5.55 [Adapted from Irwin and Narayanan] 1 Reminders CAD5 is due Wednesday 10/8 You can submit it by Thursday 10/9 at noon Lecture on 11/ will be taught by
More informationEECS 141 F01 Lecture 17
EECS 4 F0 Lecture 7 With major inputs/improvements From MaryJane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationHightoLow Propagation Delay t PHL
HightoLow Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (nchannel) immediately switches from cutoff to saturation; the pchannel pullup switches from triode to
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationNanoscale CMOS Design Issues
Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI1 Class Transistor IV Review Agenda Nonideal
More informationScaling Issues in Planar FET: Dual Gate FET and FinFETs
Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology  Cairo 1 Outline Scaling Issues for Planar
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationDigital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationVLSI Design I; A. Milenkovic 1
Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationASIC FPGA Chip hip Design Pow Po e w r e Di ssipation ssipa Mahdi Shabany
ASIC/FPGA Chip Design Power Di ssipation Mahdi Shabany Department tof Electrical ti lengineering i Sharif University of technology Outline Introduction o Dynamic Power Dissipation Static Power Dissipation
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationDigital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman
Digital Microelectronic Circuits (3611301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»
More informationTopics to be Covered. capacitance inductance transmission lines
Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationLecture 12 CMOS Delay & Transient Response
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationThe Devices: MOS Transistors
The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationNon Ideal Transistor Behavior
Non Ideal Transistor Behavior Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, Addison Wesley, 3/e, 2004 1 Nonideal Transistor IV effects Non ideal transistor Behavior Channel Length ModulaJon
More informationUsing MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B
Using MOS Models C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 5.4 W&H 4.2 Background In the past two lectures we have reviewed the iv and CV curves for MOS devices, both
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationLecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics Lena Peterson 20151013 Outline (1) Why is the CMOS inverter gain not infinite? Largesignal
More informationDigital Electronics Part II  Circuits
Digital Electronics Part  Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are nonlinear, consequently we will introduce a graphical technique for analysing such circuits The
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.
More informationMODULE III PHYSICAL DESIGN ISSUES
VLSI Digital Design MODULE III PHYSICAL DESIGN ISSUES 3.2 Powersupply and clock distribution EE  VDD P2006 3:1 3.1.1 Power dissipation in CMOS gates Power dissipation importance Package Cost. Power
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.
More informationLecture 12: MOS Capacitors, transistors. Context
Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those
More information