SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University


 Nathan Stone
 4 years ago
 Views:
Transcription
1 NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula sheet at the end of this exam Following the ECE policy, the calculator must be a Texas Instruments TI30X IIS scientific calculator There are three equally weighted questions To receive full credit, you must show your work and explain your answers The exam is designed to be taken in 60 minutes At the top of the page, be sure to fill in your name, Purdue student ID and identify the section you are in DO NOT open the exam until told to do so, and stop working immediately when time is called The last page is an equation sheet, which you may remove if you want to, after the exam begins 75 points possible, 25 per question 1) 25 points (5 point per part) 2) 25 points (5 points per part) 3) 25 points (5 points per part) Course policy I understand that if I am caught cheating in this course, I will earn an F for the course and be reported to the Dean of Students Read and understood: signature ECE305 1
2 Answer the multiple choice questions below by circling the one, best answer 1a) The magnitude of the electric field in the oxide of an MOS capacitor is typically 3 times larger than that of the electric field at the surface of the Si Why? a) Because the oxide is typically 3 times thinner than the Si b) Because the oxide is typically 3 times thicker than the Si c) Because the dielectric constant of the oxide is typically 3 times smaller than the dielectric constant of the semiconductor d) Because the dielectric constant of the oxide is typically 3 times larger than the dielectric constant of the semiconductor e) Because the minority carrier lifetime in oxide is typically 3 times longer than in Si 1b) Which of the following is true for a Ptype semiconductor in accumulation? a) The surface potential is positive b) The surface potential is negative c) The surface potential is zero d) The surface potential is φ F e) The surface potential is 2φ F 1c) Which of the following is true of the inversion charge in an MOS capacitor with a P type substrate when V G < V T? a) It is equal to C ox V G ( ) ( ) b) It is equal to C ox V G V T c) It is equal to C ox V G +V T d) It is equal to C V ox T e) It is approximately 0 1d) Which of the following is true for an Nchannel MOSFET biased under ONcurrent conditions? a) V GS < V T < V DSAT b) V GS < V T > V DSAT c) V GS < V DSAT d) V GS > V DSAT e) V GS 1e) How is an Nchannel MOSFET biased under OFFcurrent conditions? a) V GS = 0 = 0 b) V GS = 0 = V DD c) V GS = V DD = 0 d) V GS = V DD = V DD e) V GS = 005V DD = V DD ECE305 2
3 Exam 5 SOLUTIONS ECE 305 2) This problem is about the MOS capacitor whose energy band diagram is shown below You may assume that the semiconductor is silicon at 300 K and that the insulator is SiO2 with a relative dielectric constant of 39 and a thickness of 2 nm There is no charge at the oxidesi interface Also assume that the electrostatic potential in the silicon is zero as x Answer the following questions about this MOS capacitor 2a) Is the semiconductor in accumulation, flatband, depletion, or inversion? The electron is small near the surface than for x > W, so the semiconductor is either depleted or inverted We see that φ F = 0419 The bands are bent up by one φ F, which is less that 2φ F, so the semiconductor is depleted 2b) What is the numerical value of in V/cm,? ( is the electric field in the semiconductor at x = 0 + ) Explain how you got your answer D ox = K 0 ε 0 E ox = D S = K S ε 0 (no charge at the oxidesi interface) = K 0 K S E ox = K 0 K S E ox = = V/cm = V/cm ECE305 3
4 Exam 5 SOLUTIONS ECE 305 2c) What is the numerical value of the depletion width, W? Show your work φ S = 1 2 W W = 2 φ S = = cm W = 742 nm 2d) What is the numerical value of the electron concentration at the surface of the Si? That ( )? is, what is n x = 0 + n( x = 0 ) + ( = n i e E F E i ) k T B = n i e 0 = cm 3 n( x = 0 ) + = cm 3 2e) What is numerical value of the flat band voltage, V FB, of this MOS capacitor (in volts)? Be sure to include a sign The potential deep in the Si as x is 0 V The potential at the surface of the Si is The potential at the metal side of the gate oxide is: φ( x = x 0 ) = = = 0488 This is also the builtin potential (we are at equilibrium since the Fermi level in the gate is aligned with the Fermi level in the semiconductor To undo the effect of this builtin potential, we must apply an equal and opposite voltage to the gate V FB = V ECE305 4
5 Exam 5 SOLUTIONS ECE 305 3) The figures below show transistor IV characteristics for NMOS and PMOS transistors Assume that the transistors have a 1 micrometer width Also assume that the source and drain series resistances are 100 Ohms each 3a) What is the ONcurrent in Amperes of the PMOS device? Explain how you find it and circle the ONcurrent on the plot and label the circle with an A It is the current when the gate and drain voltages are at minus the power supply voltage Reading from the top curve on the right at Vds = 07 V, and Vgs = 07 V, we find: I ON = 100 ma 3b) What is the OFFcurrent of the PMOS device? Explain how you find it and circle the OFFcurrent on the plot and label the circle as B It is the current when the gate voltage is zero and the drain voltage is at minus the power supply voltage Reading from the top curve on the right (Vds = 07 V), we find: I OFF = A ECE305 5
6 Exam 5 SOLUTIONS ECE 305 3c) Approximately what is the threshold voltage of the PMOS device in saturation? Explain how you find it and indicate how you found it on the plot and mark with a C It is the gate voltage at which noticeable current begins to flow Reading from the figure on the left at Vds = 07 V (saturation), we see 03 V < V T < 02 V 3d) What is the transconductance, g m, of the PMOS device for large V DS and V GS? Explain how you got your answer, indicate how on the figure, and label it with a D Transconductance is change in drain current divided by change in gate voltage From the curve, we find: g m = ΔI D ΔV GS = g m = 30 ms ( 10 07) ma ( ) V = 30 ma V = 30 ms 3e) When the PMOS device is biased at V DS = V GS = 07 V, what is the voltage between the internal drain and the internal source of the transistor (ie you are being asked to account for the series resistors) From the figure, we apply KVL to find: I D R S + V DS I D R D + 07 = 0 V DS 07 + I D V DS = 05 V ( ) = ( ) = = 05 R S + R D ECE305 6
7 Exam 5 SOLUTIONS ECE 305 ECE305 7
ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University
NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the
More informationECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University
NAME: PUID: : ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University This is a closed book exam You may use a calculator and the formula sheet Following the ECE policy, the calculator
More informationECE 305 Exam 3: Spring 2015 March 6, 2015 Mark Lundstrom Purdue University
NAME: PUID: : ECE 305 Exam 3: March 6, 2015 Mark Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula sheet at the end of this exam Following the ECE policy,
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More information6.012 Electronic Devices and Circuits
Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationECE305: Fall 2017 MOS Capacitors and Transistors
ECE305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525530, 563599) Professor Peter Bermel Electrical and Computer Engineering Purdue
More informationPractice 3: Semiconductors
Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given
More informationLecture 12: MOS Capacitors, transistors. Context
Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those
More informationMOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA
MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the FieldEffect Transistor! Julius Lilienfeld filed a patent describing
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationEE105  Fall 2006 Microelectronic Devices and Circuits
EE105  Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationECE 305: Fall MOSFET Energy Bands
ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals
More informationPart 4: Heterojunctions  MOS Devices. MOSFET Current Voltage Characteristics
MOS Device Uses: Part 4: Heterojunctions  MOS Devices MOSCAP capacitor: storing charge, chargecoupled device (CCD), etc. MOSFET transistor: switch, current amplifier, dynamic random access memory (DRAMvolatile),
More informationFundamentals of the Metal Oxide Semiconductor FieldEffect Transistor
Triode Working FET Fundamentals of the Metal Oxide Semiconductor FieldEffect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the
More informationECE 340 Lecture 39 : MOS Capacitor II
ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS CapacitanceVoltage Analysis Things you should know when you leave Key Questions What are the effects
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More information6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
More informationLecture 04 Review of MOSFET
ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationMSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University
MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationMOS CAPACITOR AND MOSFET
EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007
More informationElectrical Characteristics of MOS Devices
Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Thresholdvoltage
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationECE305: Spring 2016 MOSFET IV
ECE305: Spring 2016 MOSFET IV Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu Lundstrom s lecture notes: Lecture 4 4/7/16 outline
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationLecture 12: MOSFET Devices
Lecture 12: MOSFET Devices GuYeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationMOSFET Physics: The Long Channel Approximation
MOSFET Physics: The ong Channel Approximation A basic nchannel MOSFET (Figure 1) consists of two heavilydoped ntype regions, the Source and Drain, that comprise the main terminals of the device. The
More informationEE105  Fall 2005 Microelectronic Devices and Circuits
EE105  Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture
More information! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)
ESE370: ircuitlevel Modeling, Design, and Optimization for Digital Systems Lec 7: September 20, 2017 MOS Transistor Operating Regions Part 1 Today! PN Junction! MOS Transistor Topology! Threshold! Operating
More informationLecture 5: CMOS Transistor Theory
Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos IV Characteristics
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017
NAME: PUID: ECE 305 Fall 017 Final Exam (Exam 5) Wednesday, December 13, 017 This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy,
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture
More informationMOS Transistor Properties Review
MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO
More informationLecture 11: MOS Transistor
Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Crosssection and layout
More informationII III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing
II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III  V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band
More informationThe Devices: MOS Transistors
The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor
More informationDepartment of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Exam 1 ` March 22, 2018
Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 2018 Exam 1 ` March 22, 2018 INSTRUCTIONS: Every problem must be done in the separate booklet Only
More informationDigital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationMOS Capacitors ECE 2204
MOS apacitors EE 2204 Some lasses of Field Effect Transistors MetalOxideSemiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. MetalSemiconductor Field
More informationDepartment of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM
Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 2018 Homework 4 Due on March 01, 2018 at 7:00 PM Suggested Readings: a) Lecture notes Important Note:
More informationEE 560 MOS TRANSISTOR THEORY
1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE ptype doped Si (N A = 10 15 to 10 16 cm 3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:
More informationIntroduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline
Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More information6.012 MICROELECTRONIC DEVICES AND CIRCUITS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 MICROELECTRONIC DEVICES AND CIRCUITS Answers to Exam 2 Spring 2008 Problem 1: Graded by Prof. Fonstad
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationECE606: Solid State Devices Lecture 23 MOSFET IV Characteristics MOSFET nonidealities
ECE66: Solid State evices Lecture 3 MOSFET I Characteristics MOSFET nonidealities Gerhard Klimeck gekco@purdue.edu Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified
More informationThe Gradual Channel Approximation for the MOSFET:
6.01  Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v
More informationLecture 28  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 18, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 281 Lecture 28  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 18, 2007 Contents: 1. Secondorder and
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationMOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.
INEL 6055  Solid State Electronics ECE Dept. UPRM 20th March 2006 Definitions MOS Capacitor Isolated Metal, SiO 2, Si Threshold Voltage qφ m metal d vacuum level SiO qχ 2 E g /2 qφ F E C E i E F E v qφ
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationMOSFET. IdVd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th
MOSFET IdVd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance
More informationElectronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi
Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Module No. #05 Lecture No. #02 FETS and MOSFETS (contd.) In the previous lecture, we studied the working
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationOperation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS
Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2
More information1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :0011:00
1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:0011:00 INSTRUCTIONS: 1. Answer all seven (7) questions.
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are
More informationTechnische Universität Graz. Institute of Solid State Physics. 11. MOSFETs
Technische Universität Graz Institute of Solid State Physics 11. MOSFETs Dec. 12, 2018 Gradual channel approximation accumulation depletion inversion http://lampx.tugraz.at/~hadley/psd/l10/gradualchannelapprox.php
More informationClass 05: Device Physics II
Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor  Band Diagrams at V=0 6. NFET as a Capacitor  Accumulation
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationMicroelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5 
6.012  Microelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5  Posted on Stellar. Due net Wednesday. Qualitative description  MOS in thermal equilibrium
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ualwell TrenchIsolated
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationECE305: Fall 2017 Metal Oxide Semiconductor Devices
C305: Fall 2017 Metal Oxide Semiconductor Devices Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525530, 563599) Professor Peter Bermel lectrical and Computer ngineering Purdue
More informationVLSI Design The MOS Transistor
VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "
More informationECE606: Solid State Devices Lecture 24 MOSFET nonidealities
EE66: Solid State Devices Lecture 24 MOSFET nonidealities Gerhard Klimeck gekco@purdue.edu Outline ) Flat band voltage  What is it and how to measure it? 2) Threshold voltage shift due to trapped charges
More informationMetaloxidesemiconductor field effect transistors (2 lectures)
Metalidesemiconductor field effect transistors ( lectures) MOS physics (brief in book) Currentvoltage characteristics  pinchoff / channel length modulation  weak inversion  velocity saturation 
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationMOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor
MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION
More informationAppendix 1: List of symbols
Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination
More informationUniversity of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA
University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm 3 @
More informationElectronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Threeterminal device whose voltagecurrent relationship is controlled by a third voltage
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!
More informationScaling Issues in Planar FET: Dual Gate FET and FinFETs
Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology  Cairo 1 Outline Scaling Issues for Planar
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at
More informationDept. of Materials Science and Engineering. Electrical Properties Of Materials
Problem Set 12 Solutions See handout "Part 4: Heterojunctions MOS Devices" (slides 918) Using the Boise State Energy Band Diagram program, build the following structure: Gate material: 5nm p + Poly Si
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationLecture #27. The Short Channel Effect (SCE)
Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )
More informationLecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 291 Lecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007 Contents: 1. Nonideal and secondorder
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level
More informationESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation
More informationan introduction to Semiconductor Devices
an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the MetalOxideSemiconductor FieldEffect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor 
More informationLecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002
6.720J/3.43J Integrated Microelectronic Devices Fall 2002 Lecture 30 1 Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor November 15, 2002 Contents: 1. Short channel effects Reading
More information