Physics and Modeling of FinFET and UTB-SOI MOSFETs

Size: px
Start display at page:

Download "Physics and Modeling of FinFET and UTB-SOI MOSFETs"

Transcription

1 2017 Symposium on Nano Device Technology Session 1: Nano Devices and New Materials Physics and Modeling of FinFET and UTB-SOI MOSFETs -- using BSIM-MG as example Speaker: Darsen Lu, Assistant Prof. S

2 Outline Introduction FinFET and UTB Device Physics Short channel effects Quantum confinement Variability benefits Parasitic capacitance Mechanical strain and stressor design Self heating FinFET and UTB Compact Models 2

3 CMOS Scaling Limits Short Channel Effects Capacitance Coupling Perspective Barrier Lowering Perspective V gs V ds source/channel barrier long channel S C g C d D V ds leakage path short channel Drain-induced barrier lowering (DIBL 3

4 Body Doping Limits Disadvantages of body doping Random dopant fluctuation Band-to-band tunneling leakage L W D. Frank et. al. IEEE Proc.,

5 Solution #1: UTBSOI MOSFET Leakage path cut off by thin body Ultra-thin-body (UTB) SOI MOSFET T ox =1.5nm, N sub =1e15cm -3, V dd =1V, V gs =0 Silicon 5

6 Solution #2: FinFET Transistor FinFET / Multiple-Gate Transistor: Gate Control from Multiple Sides of the channel leads to smaller short channel effects Gate 1 V g Gate 1 fin Gate 2 Source Si Drain T Si BOX S T ox Gate 2 Double-gate MOSFET 6

7 FinFET: A Historical Perspective 1999 IEDM: 1 st FinFET Demonstration DARPA project at UC Berkeley 2002: 25nm FinFET Demonstration 2004: 5nm FinFET Demonstration Research at TSMC led by Dr. Hu 2011: FinFET used in production Intel 22nm Technology 7

8 BSIM-MG: Industry Standard Models BSIM-CMG for FinFET Common Multi-gate Model development Selected as industry standard compact model in 2012 BSIM-IMG for UTB-SOI Independent Multi-gate Model development Selected as industry standard compact model in 2015 FinFET UTB-SOI Surroundinggate FET Double-gate FinFET 8

9 Outline Introduction FinFET and UTB Device Physics Short channel effects Quantum confinement Variability benefits Parasitic capacitance Mechanical strain and stressor design Self heating FinFET and UTB Compact Models 9

10 Short Channel Effects (SCE) SCE Improves from Bulk to UTB-SOI / FinFET to GAA 10

11 SCE Modeling Natural length λ characterize SCE λ = ε si 2ε ox ε T ox 4ε T si ε ε fin si ox 1 oxe T T si T fin oxe T oxe + 1 4H eff 2 FinFET UTB SOI H eff H fin ε si = H fin + 2 Toxe 8 ε ox DIBL, SS cosh Leff exp D λ 0.5 ( D L / λ) eff 1 11

12 FDSOI MATLAB BOX DIBL (mv/v) Decreasing Tsi Tsi=6nm to limit DIBL to 80mV at Lg=20nm λ = ε ε si ox t ox t si Gate Length (nm) 12

13 FinFET MATLAB DIBL (mv/v) Gate 1 Gate 2 Decreasing Tsi Tsi=12nm to limit DIBL to 80mV at Lg=20nm λ = 1 ε 2 ε si ox t ox t si S Gate Length (nm) 13

14 Tsi=6nm FDSOI FinFET v.s. FDSOI Source Gate Si V g Drain T Si Tsi=12nm FinFET T ox Gate 1 V g Source Si Drain T Si T ox Gate 2 Source Si Drain T Si T ox Gate V g Tsi=6nm FDSOI 14

15 SCE Benefits of Fin Recess Gate recess achieved by etching into BOX (SOI Fin) Significant SCE Improvement Shown Df in=8 Swing (mv/dec) Dfin=10 Dfin=12 Dfin=8 Gate Rec. Dfin=10 Gate Rec. Dfin=12 Gate Rec. K. Cheng et al., VLSI Fin Tail Height (nm) D. Lu et al., S3S Conf

16 Punchthrough Stopper for Bulk Fin Bulk FinFET SOI FinFET Bulk FinFET gate PTS Terry Hook, IBM SiO2 not shown 16

17 Modeling Fin Shape in BSIM-MG FinFET with various shape are modeled J. Pablo Duarte et al., Unified FinFET Compact Model: Modeling Trapezoidal Triple-Gate FinFET, SISPAD 2013 Intel 14nm 17

18 FinFET Scaling Limit: Quantum Eff. Body thickness (Tsi) allows us to continue scaling of FinFETs Tsi scaling limited by quantum effects 4nm wide Si fins J Chang et al. VLSI

19 Quantum Effects in Thin body 2D Confinement Effects Need to be Considered for FinFET and UTB-SOI Inversion Charge Density (cm -3 ) 1.2x10 19 V =V =0.7V g1 g2 9.0x10 Ψ 18 m1 =Ψ m2 = 4.6eV N body =1e15cm x x X (nm) FinFET C.-H. Lin 19

20 Quantum Effects: Threshold Shift Electrons in FinFET Resembles Particle in a BOX Problem in quantum mechanics 2 q V th E 0 = 2 π * 2 2m Tsi Wikipedia 20

21 Quantum Effect: Effective Cox Inversion layer thickness effect Coxe Effective Oxide Thickness Model The effective charge thickness is a function of Qi Inversion Charge Density (cm -3 ) V g1 =V g2 =0.7V Ψ m1 =Ψ m2 = 4.6eV N body =1e15cm X (nm) Classic QM Ids (H. Lu et al., UCSD) Vgs 21

22 Fully Depleted Body: Low Variability Extremely low variability demonstrated for UTB-SOI with lightly-doped body ETSOI K. Cheng et al., IEDM

23 Variability Modeling using BSIM-MG 6T SRAM Cells Fabricated with FinFET Device variation modeled with BSIM- MG to capture SRAM SNM distribution PD NA PL Count NF=1 189 cells Measured Data Monte Carlo Mismatch: σ TFIN =1.03nm σ LG = 4.2 nm Pull-down nfet Vth (V) NF=2 189 cells D. Lu et al., SISPAD 2009 Measured Data Monte Carlo Mismatch: σ TFIN =1.03nm σ LG = 4.2 nm Read SNM (mv) 23

24 FinFET Parasitic Capacitance Complex 3D structure need to be considered for fringe capacitance D pcca gate drain source F pitch Source Gate Drain Cgs0 (af) D pcca dependence TCAD Model Contact-Gate Distance (nm) Cgs0 (af) Fin pitch dep. Fin Pitch 40nm 50nm 60nm Fin Height (nm) 24

25 Stress Boost FinFET Performance Drain Con. Air Spacer Gate Fin (channel) Air Spacer 1.3GPa average tensile stress Fin (punchthrough stopper) Plotted: Longitudinal Stress Source Contact Local Iso. D. Lu et al., VLSI-TSA 2017 (110) / <110> Lg = 30nm Vdd=0.7v Air spacer Lattice Mismatch assumed: 1% smaller natural lattice constant Longitudinal stress in channel +1.3 GPa (tensile) 37% I dlin Benefit Possible Strain Sources: Carbon incorporation in channel SSDOI FinFET Discussion C incorporation also suppresses P-diffusion 25

26 BSIM-MG Self Heating Sub-circuit Self Heating Important for Bulk and SOI FinFETs T Temperature Node RTH0: normalized thermal resistance CTH0: normalized thermal capacitance WTH0: minimum width for Rth calculation F pitch : Fin-to-fin pitch N fin : Number of fins in total Takahasi et al., IEDM

27 Outline Introduction FinFET and UTB Device Physics Short channel effects Quantum confinement Variability benefits Parasitic capacitance Mechanical strain and stressor design Self heating FinFET and UTB Compact Models 27

28 Framework for BSIM-MG Independent Multi-Gate framework (separate front- and back- gates) BSIM-IMG FG S D BG Back-gated FDSOI FinFET with split gates Common Multi-Gate framework (tied gates) BSIM-CMG BSIM-CMG SOI module BSIM-CMG bulk module BSIM-CMG nanowire Vertical Pillar 28

29 Common Multi-gate Model: BSIM-CMG TCAD Verification: Drain Current (A) 1m Vds = 0.6V 1? Normalized Capacitance Model Symmetry Cgs 1n Csg 0.4 Na = 1e15cm -3 Cdg Na = 1e18cm -3 1p Na = 3e18cm Na = 3e18cm -3 Na = 5e18cm -3 Vgs = 1.5V Cgd Na = 1e19cm f Gate Voltage (V) Drain Voltage (V) FinFET Silicon Data: Drain Current (A) 50µ 40µ 30µ 20µ 10µ 0 Lg = 50nm Vds = 50mV Vds = 1.2V Vds = 1.2V Vds = 50mV 1p Gate Voltage (V) 1m 1µ Drain Current (µa) 1n Cgg Lg = 50nm Symbols : TCAD Lines : Model V gs = 1.2V V gs = 1.0V V gs = 0.8V V gs = 0.6V V gs = 0.4V Drain Voltage (V) Output Conductance (S) 1m 1µ Vth Roll-off (V) M. V. Dunga et al., VLSI 2007 Tox = 2nm, Na = 1e15cm -3 Vds=100mV Channel Length (µm) Lg = 90nm Vgs = 1.0V --> 0.0V (in steps of 0.2V) 1n Drain Voltage (V) Tsi = 10nm Tsi = 15nm Tsi = 20nm Tsi = 25nm Tsi = 30nm Transconductance, g m (S) 800n 600n 400n 200n L = 0.97µm Vds = 50mV Vds = 1.2V Gate Voltage (V) 29 10µ 8µ 6µ 4µ 2µ

30 Vertical GAAFET Fitting to Device Data Symbols: Electrical Test Data Lines: Model Drain Current vs. V gs L=120nm, D=80nm, Tox=3nm Asymmetric!! Transconductance Output Conductance Drain Current vs. V ds S. Venugopalan et al., Solid State Electronics, vol. 67, issue. 1,

31 Summary FinFET & UTB device physics essentially the same as planar, except Superior electrostatics, esp. with gate recess Quantum effects ultimately limits T si scaling 3D FinFET parasitic capacitance complex, but not necessarily larger Strain further boost device performance BSIM-CMG and BSIM-IMG are industry standard compact models Physically derived with good agreement with industry data Variability model captures SRAM statistics 31

32 UC Berkeley Acknowledgments Prof. Chenming Hu, Prof. Ali Niknejad, Prof. Tsu-Jae King, Chung- Hsun Lin, Mohan Dunga, Angada Sachid, Sriram V., Nuo Xu, Xin Sun, Tanvir Morshed, Wenwei Yang, Jodie Zhang, Shijing Yao NCKU K.-H. Kao, M.-H. Chiang, Wallace Lin, W.-C. Hsu, M.-D. Hsieh NAR Labs NDL for nano-fabrication, esp. Dr. Y.-J. Lee and Dr. M.-C. Chen NCHC for providing TCAD support IBM Philip Oldiges, Tze-Chiang Chen, Kangguo Cheng, Andreas Scholze, Josie Chang, Mike Guilleron, Ken Rim, Bruce Doris, Ali Khakifirooz, Pouya Hashemi, Reinaldo Vega, Tenko Yamashita, Pierre Morin, Huiming Bu, Nicolas Loubert, Shogo Mochizuki, Dechao Guo, Chia-Yu Chen, Gen Tsutsui, Robert Dennard, Jeffery Johnson, Terence Hook, Frank Yeh, Andreas Bryant, James Stathis, Bala Haran, Mukesh Khare, Wilfried Haensch, Bomsoo Kim, Bhagawan Sahu, Ghavam Shahidi and ANT/YKT staff 32

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

BSIM: Industry Standard Compact MOSFET Models

BSIM: Industry Standard Compact MOSFET Models BSIM: Industry Standard Compact MOSFET Models Y. S. Chauhan 1,, S. Venugopalan, M. A. Karim, S. Khandelwal, N. Paydavosi, P. Thakur, A. Niknejad and C. Hu 1 IIT Kanpur, India UC Berkeley, USA Sept. 19

More information

Recent Development of FinFET Technology for CMOS Logic and Memory

Recent Development of FinFET Technology for CMOS Logic and Memory Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley Why FinFET Outline FinFET process Unique features of FinFET Mobility,

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model BSIM-CMG Model Why BSIM-CMG Model When we reach the end of the technology roadmap for the classical CMOS, multigate (MG) CMOS structures will likely take up the baton. Numerous efforts are underway to

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) The Future of CMOS David Pulfrey 1 CHRONOLOGY of the FET 1933 Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) 1991 The most abundant object made by mankind (C.T. Sah) 2003 The 10 nm FET

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

Lecture 11: MOSFET Modeling

Lecture 11: MOSFET Modeling Digital Integrated Circuits (83-313) Lecture 11: MOSFET ing Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

Characteristics Optimization of Sub-10 nm Double Gate Transistors

Characteristics Optimization of Sub-10 nm Double Gate Transistors Characteristics Optimization of Sub-10 nm Double Gate Transistors YIMING LI 1,,*, JAM-WEM Lee 1, and HONG-MU CHOU 3 1 Departmenet of Nano Device Technology, National Nano Device Laboratories Microelectronics

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout B.Doyle, J.Kavalieros, T. Linton, R.Rios B.Boyanov, S.Datta, M. Doczy, S.Hareland, B. Jin, R.Chau Logic Technology Development Intel

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance 1 Seminar Spacer Lithography for Reduced Variability in MOSFET Performance Prof. Tsu-Jae King Liu Electrical Engineering & Computer Sciences Dept. University of California at Berkeley Graduate Student:

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel

FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel Yogesh S. Chauhan Assistant Professor and Ramanujan Fellow Nanolab, Department of Electrical Engineering IIT Kanpur, India Email: chauhan@iitk.ac.in

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

Faculty Presentation: Novel Technologies

Faculty Presentation: Novel Technologies 2009 IMPACT Workshop Faculty Presentation: Novel Technologies Chenming Hu, EECS Department, UC Berkeley Tsu-Jae King Liu, EECS Department, UC Berkeley Eugene Haller, MS&E Department, UC Berkeley Nathan

More information

Ultimately Scaled CMOS: DG FinFETs?

Ultimately Scaled CMOS: DG FinFETs? Ultimately Scaled CMOS: DG FinFETs? Jerry G. Fossum SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130 J. G. Fossum / 1 Outline Introduction -

More information

Extending the Era of Moore s Law

Extending the Era of Moore s Law 14 nm chip X SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark bohr 2014 idf presentation.pdf Extending the Era of Moore s Law Tsu Jae King Liu Department of Electrical Engineering

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

Carbon Nanotube Electronics

Carbon Nanotube Electronics Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J.

More information

Nanometer Transistors and Their Models. Jan M. Rabaey

Nanometer Transistors and Their Models. Jan M. Rabaey Nanometer Transistors and Their Models Jan M. Rabaey Chapter Outline Nanometer transistor behavior and models Sub-threshold currents and leakage Variability Device and technology innovations Nanometer

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Quantum-size effects in sub-10 nm fin width InGaAs finfets Quantum-size effects in sub-10 nm fin width InGaAs finfets Alon Vardi, Xin Zhao, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 9, 2015 Sponsors: DTRA NSF (E3S STC) Northrop

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING. M. Reyboz, O. Rozeau, T. Poiroux, P. Martin

ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING. M. Reyboz, O. Rozeau, T. Poiroux, P. Martin ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING M. Reyboz, O. Rozeau, T. Poiroux, P. Martin 005 OUTLINE I INTRODUCTION II ADG ARCHITECTURE III MODELING DIFFICULTIES I DIFFERENT WAYS OF MODELING

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

Modeling and Analysis of Total Leakage Currents in Nanoscale Double Gate Devices and Circuits

Modeling and Analysis of Total Leakage Currents in Nanoscale Double Gate Devices and Circuits Modeling and Analysis of Total Leakage Currents in Nanoscale Double Gate Devices and Circuits Saibal Mukhopadhyay 1, Keunwoo Kim, Ching-Te Chuang, and Kaushik Roy 1 1 Dept. of ECE, Purdue University, West

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs Technische Universität Graz Institute of Solid State Physics 11. MOSFETs Dec. 12, 2018 Gradual channel approximation accumulation depletion inversion http://lampx.tugraz.at/~hadley/psd/l10/gradualchannelapprox.php

More information

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield Xi Zhang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Physics-based compact model for ultimate FinFETs

Physics-based compact model for ultimate FinFETs Physics-based compact model for ultimate FinFETs Ashkhen YESAYAN, Nicolas CHEVILLON, Fabien PREGALDINY, Morgan MADEC, Christophe LALLEMENT, Jean-Michel SALLESE nicolas.chevillon@iness.c-strasbourg.fr Research

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

ENABLEMENT OF COMPACT MODELS FOR

ENABLEMENT OF COMPACT MODELS FOR ENABLEMENT OF COMPACT MODELS FOR ULTRA-SCALED CMOS TECHNOLOGIES D. YAKIMETS, P. SCHUDDINCK, D. JANG, M. GARCIA BARDON, N. SHARAN, B. PARVAIS*, P. RAGHAVAN, AND A. MOCUTA IMEC, KAPELDREEF 75, 3001 LEUVEN,

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

There s Plenty of Room at the Bottom and at the Top

There s Plenty of Room at the Bottom and at the Top 14 nm chip X SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark bohr 2014 idf presentation.pdf There s Plenty of Room at the Bottom and at the Top Tsu Jae King Liu Department

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications 30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications T.-W. Kim, D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne

More information

This is the author s final accepted version.

This is the author s final accepted version. Al-Ameri, T., Georgiev, V.P., Adamu-Lema, F. and Asenov, A. (2017) Does a Nanowire Transistor Follow the Golden Ratio? A 2D Poisson- Schrödinger/3D Monte Carlo Simulation Study. In: 2017 International

More information

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages) EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 12: SRAM Design ECC Timing Announcements Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

More information

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1 Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W fin =20nm) with High Mobility (μ Hole =700 cm 2 /Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate A. Agrawal 1, M. Barth 1, G. B. Rayner

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS 34 CHAPTER 3 EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS In this chapter, the effect of structural and doping parameter variations on

More information

Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET

Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET X. Wang 1, D. Reid 2, L. Wang 1, A. Burenkov 3, C. Millar 2, B. Cheng 2, A. Lange 4, J. Lorenz 3, E. Baer 3, A. Asenov 1,2! 1 Device Modelling

More information

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation Semicond. Sci. Technol. 11 1996) 1763 1769. Printed in the UK Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation Yuhua Cheng, Min-chie Jeng, Zhihong Liu, Kai Chen, Bin

More information

Gate Tunneling Current andquantum EffectsinDeep Scaled MOSFETs

Gate Tunneling Current andquantum EffectsinDeep Scaled MOSFETs JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.4, NO., MARCH, 4 7 Gate Tunneling Current andquantum EffectsinDeep Scaled MOSFETs Chang-Hoon Choi and Robert W. Dutton Center for Integrated Systems,

More information

IBM Research Report. Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures

IBM Research Report. Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures RC23248 (W0406-088) June 16, 2004 Electrical Engineering IBM Research Report Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures Arvind Kumar, Jakub Kedzierski, Steven E.

More information

Technology Development for InGaAs/InP-channel MOSFETs

Technology Development for InGaAs/InP-channel MOSFETs MRS Spring Symposium, Tutorial: Advanced CMOS Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Alon Vardi, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. References IEICE Electronics Express, Vol.* No.*,*-* Effects of Gamma-ray radiation on

More information

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

A study on modeling and simulation of Multiple- Gate MOSFETs

A study on modeling and simulation of Multiple- Gate MOSFETs Journal of Physics: Conference Series PAPER OPEN ACCESS A study on modeling and simulation of Multiple- Gate MOSFETs To cite this article: Mandeep Singh et al 2016 J. Phys.: Conf. Ser. 759 012093 Related

More information

The Prospects for III-Vs

The Prospects for III-Vs 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Jamie Teherani Collaborators: Paul Solomon (IBM), Mathieu Luisier(Purdue) Advisors: Judy Hoyt, DimitriAntoniadis

More information

STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan

STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan Department of Information Technology SSN College of Engineering, Kalavakkam 603 110, Chennai,

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

ECE 305: Fall MOSFET Energy Bands

ECE 305: Fall MOSFET Energy Bands ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs 42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4,

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

Fig The electron mobility for a-si and poly-si TFT.

Fig The electron mobility for a-si and poly-si TFT. Fig. 1-1-1 The electron mobility for a-si and poly-si TFT. Fig. 1-1-2 The aperture ratio for a-si and poly-si TFT. 33 Fig. 1-2-1 All kinds defect well. (a) is the Dirac well. (b) is the repulsive Columbic

More information

SILICON ON FERROELECTRIC INSULATOR FIELD EFFECT TRANSISTOR (SOFFET): A RADICAL ALTERNATIVE TO OVERCOME THE THERMIONIC LIMIT A DISSERTATION

SILICON ON FERROELECTRIC INSULATOR FIELD EFFECT TRANSISTOR (SOFFET): A RADICAL ALTERNATIVE TO OVERCOME THE THERMIONIC LIMIT A DISSERTATION SILICON ON FERROELECTRIC INSULATOR FIELD EFFECT TRANSISTOR (SOFFET): A RADICAL ALTERNATIVE TO OVERCOME THE THERMIONIC LIMIT A DISSERTATION IN Electrical and Computer Engineering & Physics Presented to

More information

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Analysis of Ultra-Scaled InAs HEMTs Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche Birck Nanotechnology Center and Purdue University,

More information

Prospects for Ge MOSFETs

Prospects for Ge MOSFETs Prospects for Ge MOSFETs Sematech Workshop December 4, 2005 Dimitri A. Antoniadis Microsystems Technology Laboratories MIT Sematech Workshop 2005 1 Channel Transport - I D I D =WQ i (x 0 )v xo v xo : carrier

More information

V t vs. N A at Various T ox

V t vs. N A at Various T ox V t vs. N A at Various T ox Threshold Voltage, V t 0.9 0.8 0.7 0.6 0.5 0.4 T ox = 5.5 nm T ox = 5 nm T ox = 6 nm m = 4.35 ev, Q ox = 0; V sb = 0 V 0.3 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Body Doping, N

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

A Verilog-A Compact Model for Negative Capacitance FET

A Verilog-A Compact Model for Negative Capacitance FET A Verilog-A Compact Model for Negative Capacitance FET Version.. Muhammad Abdul Wahab and Muhammad Ashraful Alam Purdue University West Lafayette, IN 4797 Last Updated: Oct 2, 25 Table of Contents. Introduction...

More information

Compact Modeling of Semiconductor Devices: MOSFET

Compact Modeling of Semiconductor Devices: MOSFET Compact Modeling of Semiconductor Devices: MOSFET Yogesh S. Chauhan Assistant Professor and Ramanujan Fellow Nanolab, Department of Electrical Engineering IIT Kanpur Email: chauhan@iitk.ac.in Homepage

More information

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies Hans Tuinhout, The Netherlands motivation: from deep submicron digital ULSI parametric spread

More information

Impact of Scaling on The Effectiveness of Dynamic Power Reduction Schemes

Impact of Scaling on The Effectiveness of Dynamic Power Reduction Schemes Impact of Scaling on The Effectiveness of Dynamic Power Reduction Schemes D. Duarte Intel Corporation david.e.duarte@intel.com N. Vijaykrishnan, M.J. Irwin, H-S Kim Department of CSE, Penn State University

More information

ANALYTICAL SOI MOSFET MODEL VALID FOR GRADED-CHANNEL DEVICES

ANALYTICAL SOI MOSFET MODEL VALID FOR GRADED-CHANNEL DEVICES ANALYICAL SOI MOSFE MODEL VALID FOR GRADED-CHANNEL DEVICES Benjamín Iñíguez 1, Marcelo Antonio Pavanello 2,3, João Antonio Martino 3 and Denis Flandre 4 3 Escola ècnica Superior d`engenyeria Universitat

More information

The K-Input Floating-Gate MOS (FGMOS) Transistor

The K-Input Floating-Gate MOS (FGMOS) Transistor The K-Input Floating-Gate MOS (FGMOS) Transistor C 1 V D C 2 V D I V D I V S Q C 1 C 2 V S V K Q V K C K Layout V B V K C K Circuit Symbols V S Control Gate Floating Gate Interpoly Oxide Field Oxide Gate

More information