ECE 2300 Digital Logic & Computer Organization

Size: px
Start display at page:

Download "ECE 2300 Digital Logic & Computer Organization"

Transcription

1 ECE 2300 Digital Logic & Computer Organization pring 201 More inary rithmetic LU 1

2 nnouncements Lab 4 prelab () due tomorrow Lab 5 to be released tonight 2

3 Example: Fixed ize 2 C ddition White stone = 0 lack stone = 1 With each row representing a 4-bit 2 s complement, adding which two rows would cause an overflow? Row 1 + Row 4 : (-3) + (-6) Row 3 + Row 4 : (-5) + (-6) 3

4 Review: Full dder Cin Cout Cin Cout OR F 4

5 uilding a inary dder carries () () () Inputs & outputs for the i th bit position Inputs: i, i and Ci (carry-in) Outputs: i (sum) and Ci+1 (carry-out) Carry-out of a bit position is the carry-in for next bit position 5

6 Four it dder a 3 b 3 a 2 b 2 a 1 b 1 a 0 b 0 c 4 Cout Cin c 3 Cout Cin c 2 Cout Cin c 1 Cout Cin 0 s 3 s 2 s 1 s 0 Ripple Carry dder (RC) 6

7 Two s Complement ubtraction Negate second operand and add (104) (17) (104) (-17) (7) 7

8 Four it ubtractor b 3 b 2 b 1 b 0 negating the second operand + b 3 b 2 b 1 b 0 1 a 3 b 3 a 2 b 2 a 1 b 1 a 0 b 0 c 4 Cout Cin c 3 Cout Cin c 2 Cout Cin c 1 Cout Cin 1 s 3 s 2 s 1 s 0

9 Four it dder / ubtractor a 3 b 3 a 2 b 2 a 1 b 1 a 0 b c 4 Cout Cin c 3 Cout Cin c 2 Cout Cin c 1 Cout Cin sub s 3 s 2 s 1 s 0 9

10 dder Implementations Many different adder implementations exist, which differ in speed and circuit complexity Ripple carry adder is simple but slow Each 1-bit full adder must wait for the carry bit to be calculated from the previous full adder Common techniques to speed up carry propagation Carry lookahead Carry select etc. 10

11 Carry Lookahead dder (CL) Calculation of carry out of M is slow for large RCs Carry has to propagate from L to the M, which forms the longest path (critical path) CL adder calculates groups of carries in parallel 11

12 Carry Generation and Propagation generated generated propagated generated Cout = 1 from a bit position happens for 2 reasons Carry is generated from this bit position Carry in to this position is propagated to the next 12

13 Carry Generation and Propagation Carry into i th position: c i lso the carry out from (i-1) th position Carry generation function for the i th position G i = a i b i Carry propagation function for the i th position P i = a i + b i Carry out of the i th position c i+1 = G i + P i c i 13

14 Carry Out Equations for 4-bit dder c 1 = G 0 + P 0 c 0 c 2 = G 1 + P 1 c 1 G i = a i b i P i = a i + b i = G 1 + P 1 G 0 + P 1 P 0 c 0 c 3 = G 2 + P 2 c 2 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 c 0 c 4 = G 3 + P 3 c 3 = G 3 + P 3 G 2 + P 3 P 2 G 1 + P 3 P 2 P 1 G 0 + P 3 P 2 P 1 P 0 c 0 generate carry from this position propagate carry generated in position 2 propagate carry generated in position 1 propagate carry generated in position 0 propagate carry in to position 0 14

15 Carry Out Logic for 4-bit dder G i = a i b i P i = a i + b i c 4 = G 3 + P 3 c 3 = G 3 + P 3 G 2 + P 3 P 2 G 1 + P 3 P 2 P 1 G 0 + P 3 P 2 P 1 P 0 c 0 = G 3 + P 3 ( G 2 + P 2 ( G 1 + P 1 G 0 ) ) + ( P 3 P 2 P 1 P 0 ) c 0 G 3:0 Carry generation from bits 3-0 P 3:0 Carry propagation through bits 3-0 G 3:0 G 3 P 3 G 2 P 2 G 1 P 1 G 0 c 4 c 0 P 3:0 P 3 P 2 P 1 P 0 15

16 32-bit CL with 4-bit RCs a 31:2 b 31:2 a 27:24 b 27:24 a 7:4 b 7:4 a 3:0 b 3:0 c out (c 32 ) 4-bit CL lock c 2 4-bit CL lock c 24 4-bit CL lock c 4 4-bit CL lock c in (c 0 ) 31:2 27:24 7:4 3:0 Carry out logic gets more complicated beyond 4 bits CLs are often implemented as 4-bit modules and instantiated in a hierarchical way to realize wider adders 16

17 32-bit CL with 4-bit RCs a 31:2 b 31:2 a 27:24 b 27:24 a 7:4 b 7:4 a 3:0 b 3:0 c out (c 32 ) 4-bit CL lock c 2 4-bit CL lock c 24 4-bit CL lock c 4 4-bit CL lock c in (c 0 ) 31:2 27:24 7:4 3:0 a 3 b 3 a 2 b 2 a 1 b 1 a 0 b 0 c 3 c F F 2 c F 1 c F G 3:0 G 3 P 3 G 2 P 2 G 1 P 1 G 0 P s and G s for all CL blocks are generated in parallel c 4 c 0 P 3:0 P 3 P 2 P 1 P 0 17

18 Longest Delay (Critical Path) its 31-2 a 31 b 31 a 30 b 30 a 29 b 29 a 2 b 2 c 31 c 30 c 29 c 2 F F F F its 7-4 a 7 b 7 a 6 b 6 a 5 b 5 a 4 b 4 c 7 c 6 c 5 c 4 F F F F its 3-0 a 3 b 3 a 2 b 2 a 1 b 1 a 0 b 0 c 3 c 2 c 1 c 0 F F F F c G 31:2 c P 31:2 G 31 P 3 G 2 P 2 G 1 P 29 G 2 P 31 P 30 P 29 P 2 c 7 G 7:4 c P 7:4 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 7 P 6 P 5 P 4 c 4 3 G 3:0 c P 3:0 G 3 P 3 G 2 P 2 G 1 P 1 G 0 P 3 P 2 P 1 P 0 1

19 Longest Delay (Critical Path) its 31-2 a 31 b 31 a 30 b 30 a 29 b 29 a 2 b 2 c 31 c 30 c 29 c 2 F F F F its 7-4 a 7 b 7 a 6 b 6 a 5 b 5 a 4 b 4 c 7 c 6 c 5 c 4 F F F F its 3-0 a 3 b 3 a 2 b 2 a 1 b 1 a 0 b 0 c 3 c 2 c 1 c 0 F F F F c G 31:2 c P 31:2 G 31 P 3 G 2 P 2 G 1 P 29 G 2 P 31 P 30 P 29 P 2 c 7 G 7:4 c P 7:4 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 7 P 6 P 5 P 4 c 4 3 G 3:0 c P 3:0 G 3 P 3 G 2 P 2 G 1 P 1 G 0 P 3 P 2 P 1 P 0 19

20 Our Microprocessor is uilt to Compute +2 sext({off,0}) dder MUX 0 1 MP PC Inst. RM DR M F MD RW MW Decoder RF RW DR D_in Data Data E IMM 0 1 M F m F 0 LU V C Z N M_address Data_in Data RM MW 0 1 MD LU is the computing core of a processor 20

21 What is an LU? rithmetic Logic Unit (LU): Combinational logic circuit that combines a variety of operations into a single unit Common operations may include ddition and subtraction Logical (OR, ND) hift Comparisons 21

22 imple -it LU I O CI LU CO O 3 OP Y Z 22

23 LU Operations, Inputs & Outputs Operations ddition and ubtraction itwise ND and OR Left hift and Right hift Inputs,, Carry In (CI) hift In (I) Code indicating operation to be performed (OP) Outputs Y, Carry Out (CO) hift Out (O) Flags regarding the result of the operation Overflow flag (O), Zero flag (Z) 23

24 hift Operations Left hift: shifts each bit left by 1 position I O= I M shifted into O, I shifted into L Right hift: shifts each bit right by 1 position I I =O L shifted into O, I shifted into M 24

25 LU lock Diagram 25 LOP Y Logical CI Y CO dder I OP Y hifter O Y O CO I CI OP EL Control Logic LOP OP OEL OP O O NOR Z

26 Example: LU Operation Encodings OP Name OP EL CI LOP OP OEL Operation DD Y = + + CI U Y = ND Y = ND OR Y = OR HL Y = [6..0],I HR Y = I,[7..1] P Y = CI dder Y CO CI O Logical Y LOP CO O Y OP Control Logic EL 3 OP LOP OP OEL 2 2 I hifter Y I O OP O NOR Z 26

27 H&H efore Next Class Next Time Memories 27

Arithmetic Circuits Didn t I learn how to do addition in the second grade? UNC courses aren t what they used to be...

Arithmetic Circuits Didn t I learn how to do addition in the second grade? UNC courses aren t what they used to be... rithmetic Circuits Didn t I learn how to do addition in the second grade? UNC courses aren t what they used to be... + Finally; time to build some serious functional blocks We ll need a lot of boxes The

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization rithmetic Logic Unit (LU) and Register File Prof. Michel. Kinsy Computing: Computer Organization The DN of Modern Computing Computer CPU Memory System LU Register File Disks

More information

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder it-liced Design Control EEC 141 F01 rithmetic Circuits Data-In Register dder hifter it 3 it 2 it 1 it 0 Data-Out Tile identical processing elements Generic Digital Processor Full-dder MEMORY Cin Full adder

More information

Module 2. Basic Digital Building Blocks. Binary Arithmetic & Arithmetic Circuits Comparators, Decoders, Encoders, Multiplexors Flip-Flops

Module 2. Basic Digital Building Blocks. Binary Arithmetic & Arithmetic Circuits Comparators, Decoders, Encoders, Multiplexors Flip-Flops Module 2 asic Digital uilding locks Lecturer: Dr. Yongsheng Gao Office: Tech 3.25 Email: Web: Structure: Textbook: yongsheng.gao@griffith.edu.au maxwell.me.gu.edu.au 6 lecturers 1 tutorial 1 laboratory

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 4:332:23 DIGITAL LOGIC DEIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 23 Lecture #4: Adders, ubtracters, and ALUs Vector Binary Adder [Wakerly 4 th Ed., ec. 6., p. 474] ingle

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits Digital Integrated Circuits Design Perspective rithmetic Circuits Reference: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, nantha Chandrakasan and orivoje Nikolic Disclaimer: slides adapted

More information

Arithmetic Building Blocks

Arithmetic Building Blocks rithmetic uilding locks Datapath elements dder design Static adder Dynamic adder Multiplier design rray multipliers Shifters, Parity circuits ECE 261 Krish Chakrabarty 1 Generic Digital Processor Input-Output

More information

Addition and Subtraction

Addition and Subtraction ddition and Subtraction Philipp Koehn 9 February 2018 1 addition 1-it dder 2 Let s start simple: dding two 1-it numbers Truth table + 0 0 0 0 1 1 1 0 1 1 1 10 Really 2 Operations 3 Truth table for "position

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems Review EE 5 - omponents and Design Techniques for Digital ystems Lec 8 rithmetic II (Multiplication) David uller Electrical Engineering and omputer ciences University of alifornia, Berkeley http://www.eecs.berkeley.edu/~culler

More information

Arithmetic Circuits How to add and subtract using combinational logic Setting flags Adding faster

Arithmetic Circuits How to add and subtract using combinational logic Setting flags Adding faster rithmetic Circuits Didn t I learn how to do addition in second grade? UNC courses aren t what they used to be... 01011 +00101 10000 Finally; time to build some serious functional blocks We ll need a lot

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of omputer Systems ombinational Logic Stephen. Edwards olumbia University Fall 2012 Encoders and Decoders Decoders Input: n-bit binary number Output: 1-of-2 n one-hot code 2-to-4 in out 00

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays CMSC 33 Lecture 8 Midterm Exam returned ssign Homework 3 Circuits for ddition Digital Logic Components Programmable Logic rrays UMC, CMSC33, Richard Chang Half dder Inputs: and Outputs:

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL

More information

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 EECS5 - Digital Design Lecture - Combinational Logic Circuits Part Feburary 26, 22 John Wawrzynek Spring 22 EECS5 - Lec-cl Page Combinational Logic (CL) Defined y i = f i (x,...., xn-), where x, y are

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

Hw 6 due Thursday, Nov 3, 5pm No lab this week

Hw 6 due Thursday, Nov 3, 5pm No lab this week EE141 Fall 2005 Lecture 18 dders nnouncements Hw 6 due Thursday, Nov 3, 5pm No lab this week Midterm 2 Review: Tue Nov 8, North Gate Hall, Room 105, 6:30-8:30pm Exam: Thu Nov 10, Morgan, Room 101, 6:30-8:00pm

More information

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY UNIT III Design of ombinational Logic ircuits Department of omputer Science SRM UNIVERSITY Introduction to ombinational ircuits Logic circuits for digital systems may be ombinational Sequential combinational

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS ARITHMETIC COMBINATIONAL MODULES AND NETWORKS 1 SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS HALF-ADDER AND FULL-ADDER MODULES CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES NETWORKS OF ADDER MODULES

More information

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr.

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr. Chapter 4 Dr. Panos Nasiopoulos Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. Sequential: In addition, they include storage elements Combinational

More information

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction Chapter 5 igital systems digital system is any machine that processes information encoded in the form of digits. Modern digital systems use binary digits, encoded as voltage levels. Two voltage levels,

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Combinatorial RTL Components

Combinatorial RTL Components Principles Of Digital Design Combinatorial RTL Components Computation and Reorganization Arithmetic and Comparison Components Logic Components election Components ncoding/decoding Components Bit manipulation

More information

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two.

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Announcements Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Chapter 5 1 Chapter 3: Part 3 Arithmetic Functions Iterative combinational circuits

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

Combinational Logic. Jee-Hwan Ryu. School of Mechanical Engineering Korea University of Technology and Education

Combinational Logic. Jee-Hwan Ryu. School of Mechanical Engineering Korea University of Technology and Education MEC5 디지털공학 Combinational Logic Jee-Hwan Ryu School of Mechanical Engineering Combinational circuits Outputs are determined from the present inputs Consist of input/output variables and logic gates inary

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 28 Combinational Building Blocks Lecture 5: Announcements Lab 2 prelab due tomorrow HW due Friday HW 2 to be posted on Thursday Lecture 4 to be replayed

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 The -bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Multiplication CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Fast Adders CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW5

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Binary addition by hand. Adding two bits

Binary addition by hand. Adding two bits Chapter 3 Arithmetic is the most basic thing you can do with a computer We focus on addition, subtraction, multiplication and arithmetic-logic units, or ALUs, which are the heart of CPUs. ALU design Bit

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 3 1 Logistics If you cannot login to MarkUs, email me your UTORID and name. Check lab marks on MarkUs, if it s recorded wrong, contact Larry within a week after the lab. Quiz 1 average: 86%

More information

EECS150. Arithmetic Circuits

EECS150. Arithmetic Circuits EE5 ection 8 Arithmetic ircuits Fall 2 Arithmetic ircuits Excellent Examples of ombinational Logic Design Time vs. pace Trade-offs Doing things fast may require more logic and thus more space Example:

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

Number representation

Number representation Number representation A number can be represented in binary in many ways. The most common number types to be represented are: Integers, positive integers one-complement, two-complement, sign-magnitude

More information

Combina-onal Logic Chapter 4. Topics. Combina-on Circuit 10/13/10. EECE 256 Dr. Sidney Fels Steven Oldridge

Combina-onal Logic Chapter 4. Topics. Combina-on Circuit 10/13/10. EECE 256 Dr. Sidney Fels Steven Oldridge Combina-onal Logic Chapter 4 EECE 256 Dr. Sidney Fels Steven Oldridge Topics Combina-onal circuits Combina-onal analysis Design procedure simple combined to make complex adders, subtractors, converters

More information

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables UNIT 8 Computer Circuitry: Layers of bstraction 1 oolean Logic & Truth Tables Computer circuitry works based on oolean logic: operations on true (1) and false (0) values. ( ND ) (Ruby: && ) 0 0 0 0 0 1

More information

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 8. Design Tradeoffs 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L08: Design Tradeoffs, Slide #1 There are a large number of implementations

More information

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits CSEE 3827: Fundamentals of Computer Systems Combinational Circuits Outline (M&K 3., 3.3, 3.6-3.9, 4.-4.2, 4.5, 9.4) Combinational Circuit Design Standard combinational circuits enabler decoder encoder

More information

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 8. Design Tradeoffs 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L08: Design Tradeoffs, Slide #1 There are a large number of implementations

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture.

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture. EE4-Fall 2 Digital Integrated ircuits dders Lecture 2 dders 4 4 nnouncements Midterm 2: Thurs. Nov. 4 th, 6:3-8:pm Exam starts at 6:3pm sharp Review session: Wed., Nov. 3 rd, 6pm n Intel Microprocessor

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

Solutions for Appendix C Exercises

Solutions for Appendix C Exercises C Solutions for Appix C Exercises 1 Solutions for Appix C Exercises C.1 A B A B A + B A B A B A + B 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 C.2 Here is the first equation: E = ((

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Law Combinational

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

CMP 334: Seventh Class

CMP 334: Seventh Class CMP 334: Seventh Class Performance HW 5 solution Averages and weighted averages (review) Amdahl's law Ripple-carry adder circuits Binary addition Half-adder circuits Full-adder circuits Subtraction, negative

More information

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati CS221: Digital Design QMLogicMinimization Minimization Dr. A. Sahu DeptofComp.Sc.&Engg. Indian Institute of Technology Guwahati 1 Outline Study of Components Logic Implementation Using MUX & Decoder 4

More information

EE 109 Final Don t Make the Same Mistake

EE 109 Final Don t Make the Same Mistake EE 9 Final Don t Make the ame Mistake No calculators are allowed. how all your work to get full credit. Note: The following are all INCORRECT answers meant to highlight common misunderstandings! Try to

More information

CHAPTER log 2 64 = 6 lines/mux or decoder 9-2.* C = C 8 V = C 8 C * 9-4.* (Errata: Delete 1 after problem number) 9-5.

CHAPTER log 2 64 = 6 lines/mux or decoder 9-2.* C = C 8 V = C 8 C * 9-4.* (Errata: Delete 1 after problem number) 9-5. CHPTER 9 2008 Pearson Education, Inc. 9-. log 2 64 = 6 lines/mux or decoder 9-2.* C = C 8 V = C 8 C 7 Z = F 7 + F 6 + F 5 + F 4 + F 3 + F 2 + F + F 0 N = F 7 9-3.* = S + S = S + S S S S0 C in C 0 dder

More information

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification CMSC 33 Lecture 9 Homework 4 Questions Combinational Logic Components Programmable Logic rrays Introduction to Circuit Simplification UMC, CMSC33, Richard Chang CMSC 33, Computer Organization

More information

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Chapter 03: Computer Arithmetic Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Objective To understand adder circuit Subtractor circuit Fast adder circuit 2 Adder Circuit 3 Full

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Adders allow computers to add numbers 2-bit ripple-carry adder

Adders allow computers to add numbers 2-bit ripple-carry adder Lecture 12 Logistics HW was due yesterday HW5 was out yesterday (due next Wednesday) Feedback: thank you! Things to work on: ig picture, ook chapters, Exam comments Last lecture dders Today Clarification

More information

1 Short adders. t total_ripple8 = t first + 6*t middle + t last = 4t p + 6*2t p + 2t p = 18t p

1 Short adders. t total_ripple8 = t first + 6*t middle + t last = 4t p + 6*2t p + 2t p = 18t p UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Study Homework: Arithmetic NTU IC54CA (Fall 2004) SOLUTIONS Short adders A The delay of the ripple

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 VLSI Design Adder Design [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 Major Components of a Computer Processor Devices Control Memory Input Datapath

More information

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps CMSC 33 Lecture 9 Combinational Logic Components Programmable Logic rrays Karnaugh Maps UMC, CMSC33, Richard Chang Last Time & efore Returned midterm exam Half adders & full adders Ripple

More information

Logic. Combinational. inputs. outputs. the result. system can

Logic. Combinational. inputs. outputs. the result. system can Digital Electronics Combinational Logic Functions Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends

More information

L8/9: Arithmetic Structures

L8/9: Arithmetic Structures L8/9: Arithmetic Structures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Rex Min Kevin Atkinson Prof. Randy Katz (Unified Microelectronics

More information

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits Logic and Computer Design Fundamentals Chapter 5 Arithmetic Functions and Circuits Arithmetic functions Operate on binary vectors Use the same subfunction in each bit position Can design functional block

More information

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation Outline Logic ircuits Introduction Logic Systems TTL MOS Logic Gates NOT, OR, N NOR, NN, XOR Implementation oolean lgebra ombinatorial ircuits Multipleer emultipleer rithmetic ircuits Simplifying Logic

More information

3. Combinational Circuit Design

3. Combinational Circuit Design CSEE 3827: Fundamentals of Computer Systems, Spring 2 3. Combinational Circuit Design Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp/ Outline (H&H 2.8,

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

Computer Architecture 10. Fast Adders

Computer Architecture 10. Fast Adders Computer Architecture 10 Fast s Ma d e wi t h Op e n Of f i c e. o r g 1 Carry Problem Addition is primary mechanism in implementing arithmetic operations Slow addition directly affects the total performance

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

Carry Look Ahead Adders

Carry Look Ahead Adders Carry Look Ahead Adders Lesson Objectives: The objectives of this lesson are to learn about: 1. Carry Look Ahead Adder circuit. 2. Binary Parallel Adder/Subtractor circuit. 3. BCD adder circuit. 4. Binary

More information

Computer Engineering Department. CC 311- Computer Architecture. Chapter 4. The Processor: Datapath and Control. Single Cycle

Computer Engineering Department. CC 311- Computer Architecture. Chapter 4. The Processor: Datapath and Control. Single Cycle Computer Engineering Department CC 311- Computer Architecture Chapter 4 The Processor: Datapath and Control Single Cycle Introduction The 5 classic components of a computer Processor Input Control Memory

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

University of Toronto Faculty of Applied Science and Engineering Final Examination

University of Toronto Faculty of Applied Science and Engineering Final Examination University of Toronto Faculty of Applied Science and Engineering Final Examination ECE 24S - Digital Systems Examiner: Belinda Wang, Jianwen Zhu 2: - 4:3pm, April 26th, 24 Duration: 5 minutes (2.5 hours)

More information

This Unit: Arithmetic. CIS 371 Computer Organization and Design. Pre-Class Exercise. Readings

This Unit: Arithmetic. CIS 371 Computer Organization and Design. Pre-Class Exercise. Readings This Unit: Arithmetic CI 371 Computer Organization and Design Unit 3: Arithmetic Based on slides by Prof. Amir Roth & Prof. Milo Martin App App App ystem software Mem CPU I/O A little review Binary + 2s

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

F3 F F1 GND

F3 F F1 GND 4-BIT ARITHMETIC LOGIC UNIT The MC54/74F82 performs three arithmetic and three logic operatio on two 4-bit words, A and B. Two additional elect input codes force the Function outputs LOW or HIGH. An Overflow

More information

Arithmetic Circuits. (Part I) Randy H. Katz University of California, Berkeley. Spring 2007

Arithmetic Circuits. (Part I) Randy H. Katz University of California, Berkeley. Spring 2007 rithmetic Circuits (Part I) Rady H. Katz Uiversity of Califoria, erkeley prig 27 Lecture #23: rithmetic Circuits- Motivatio rithmetic circuits are excellet examples of comb. logic desig Time vs. pace Trade-offs

More information

ECE380 Digital Logic. Positional representation

ECE380 Digital Logic. Positional representation ECE380 Digital Logic Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Dr. D. J. Jackson Lecture 16-1 Positional representation First consider integers Begin with

More information

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture : dders Slides courtesy of Deming hen Slides based on the initial set from David Harris MOS VLSI Design Outline Single-bit ddition arry-ripple dder arry-skip dder arry-lookahead dder arry-select

More information

CMPUT 329. Circuits for binary addition

CMPUT 329. Circuits for binary addition CMPUT 329 Parallel Adder with Carry Lookahead and ALU Ioanis Nikolaidis (Katz & Borriello) rcuits for binary addition Full adder (carry-in to cascade for multi-bit adders) Sum = xor A xor B Cout = B +

More information

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C.

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C. Numbers & Arithmetic Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See: P&H Chapter 2.4-2.6, 3.2, C.5 C.6 Example: Big Picture Computer System Organization and Programming

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L15 Blocks (1) inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #15: Combinational Logic Blocks Outline CL Blocks Latches & Flip Flops A Closer Look 2005-07-14 Andy Carle CS

More information

A B OUT_0 OUT_1 OUT_2 OUT_

A B OUT_0 OUT_1 OUT_2 OUT_ A B OUT_0 OUT_1 OUT_2 OUT_3 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 A Decoder is something that does the opposite of encoding; it converts the data back into its original form. This decoder converts

More information

A crash course in Digital Logic

A crash course in Digital Logic crash course in Digital Logic Computer rchitecture 1DT016 distance Fall 2017 http://xyx.se/1dt016/index.php Per Foyer Mail: per.foyer@it.uu.se Per.Foyer@it.uu.se 2017 1 We start from here Gates Flip-flops

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 3 Combinational Logic Circuits ELEN0040 3-4 1 Combinational Functional Blocks 1.1 Rudimentary Functions 1.2 Functions

More information

Lecture 18: Datapath Functional Units

Lecture 18: Datapath Functional Units Lecture 8: Datapath Functional Unit Outline Comparator Shifter Multi-input Adder Multiplier 8: Datapath Functional Unit CMOS VLSI Deign 4th Ed. 2 Comparator 0 detector: A = 00 000 detector: A = Equality

More information

Computer Architecture. ESE 345 Computer Architecture. Design Process. CA: Design process

Computer Architecture. ESE 345 Computer Architecture. Design Process. CA: Design process Computer Architecture ESE 345 Computer Architecture Design Process 1 The Design Process "To Design Is To Represent" Design activity yields description/representation of an object -- Traditional craftsman

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

Combinational Logic Design Arithmetic Functions and Circuits

Combinational Logic Design Arithmetic Functions and Circuits Combinational Logic Design Arithmetic Functions and Circuits Overview Binary Addition Half Adder Full Adder Ripple Carry Adder Carry Look-ahead Adder Binary Subtraction Binary Subtractor Binary Adder-Subtractor

More information