CprE 281: Digital Logic

Size: px
Start display at page:

Download "CprE 281: Digital Logic"

Transcription

1 CprE 281: Digital Logic Instructor: Alexander Stoytchev

2 Multiplication CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

3 HW 6 is out Administrative Stuff It is due on Monday Oct 4pm

4 Quick Review

5 The Full-Adder Circuit [ Figure 3.3c from the textbook ]

6 The Full-Adder Circuit Let's take a closer look at this. [ Figure 3.3c from the textbook ]

7 Another Way to Draw the Full-Adder Circuit c i y i x i c i+1 = x i y i + (x i + y i )c i

8 Decomposing the Carry Expression c i+1 = x i y i + x i c i + y i c i

9 Decomposing the Carry Expression c i+1 = x i y i + x i c i + y i c i c i+1 = x i y i + (x i + y i )c i

10 Decomposing the Carry Expression c i+1 = x i y i + x i c i + y i c i c i+1 = x i y i + (x i + y i )c i c i y i x i c i+1

11 Another Way to Draw the Full-Adder Circuit c i+1 = x i y i + x i c i + y i c i c i+1 = x i y i + (x i + y i )c i c i y i s i x i c i+1

12 Another Way to Draw the Full-Adder Circuit c i+1 = x i y i + (x i + y i )c i c i y i s i x i c i+1

13 Another Way to Draw the Full-Adder Circuit c i+1 = x i y i + (x i + y i )c i g i p i c i y i s i x i c i+1

14 Another Way to Draw the Full-Adder Circuit c i+1 = x i y i + (x i + y i )c i g i p i c i y i s i x i p i g i c i+1

15 Yet Another Way to Draw It (Just Rotate It) x i y i g i p i c i c i+1 s i

16 Now we can Build a Ripple-Carry Adder x 1 y 1 x 0 y 0 g 1 p 1 g 0 p 0 c 2 c 1 c 0 Stage 1 Stage 0 s 1 s 0 [ Figure 3.14 from the textbook ]

17 Now we can Build a Ripple-Carry Adder x 1 y 1 x 0 y 0 g 1 p 1 g 0 p 0 c 2 c 1 c 0 Stage 1 Stage 0 s 1 s 0 [ Figure 3.14 from the textbook ]

18 The delay is 5 gates (1+2+2) x 1 y 1 x 0 y 0 g 1 p 1 g 0 p 0 c 2 c 1 c 0 Stage 1 Stage 0 s 1 s 0

19 n-bit ripple-carry adder: 2n+1 gate delays x 1 y 1 x 0 y 0 g 1 p 1 g 0 p 0 c 2 c 1 c 0... Stage 1 Stage 0 s 1 s 0

20 Decomposing the Carry Expression c i+1 = x i y i + x i c i + y i c i c i+1 = x i y i + (x i + y i )c i g i p i c i+1 = g i + p i c i c i+1 = g i + p i (g i-1 + p i-1 c i-1 ) = g i + p i g i-1 + p i p i-1 c i-1

21 Carry for the first two stages c 1 = g 0 + p 0 c 0 c 2 = g 1 + p 1 g 0 + p 1 p 0 c 0

22 The first two stages of a carry-lookahead adder x 1 y 1 x 0 y 0 x 0 y 0 g 1 p 1 g 0 p 0 c 0 c 2 c 1 s 1 s 0 [ Figure 3.15 from the textbook ]

23 It takes 3 gate delays to generate c 1 x 1 y 1 x 0 y 0 x 0 y 0 g 1 p 1 g 0 p 0 c 0 c 2 c 1 s 1 s 0

24 It takes 3 gate delays to generate c 2 x 1 y 1 x 0 y 0 x 0 y 0 g 1 p 1 g 0 p 0 c 0 c 2 c 1 s 1 s 0

25 The first two stages of a carry-lookahead adder x 1 y 1 x 0 y 0 x 0 y 0 g 1 p 1 g 0 p 0 c 0 c 2 c 1 s 1 s 0

26 It takes 4 gate delays to generate s 1 x 1 y 1 x 0 y 0 x 0 y 0 g 1 p 1 g 0 p 0 c 0 c 2 c 1 s 1 s 0

27 It takes 4 gate delays to generate s 2 x 1 y 1 x 0 y 0 x 0 y 0 g 1 p 1 g 0 p 0 c 0 c 2 c 1 s 2 s 1 s 0

28 N-bit Carry-Lookahead Adder It takes 3 gate delays to generate all carry signals It takes 1 more gate delay to generate all sum bits Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

29 Expanding the Carry Expression c i+1 = g i + p i c i c 1 = g 0 + p 0 c 0 c 2 = g 1 + p 1 g 0 + p 1 p 0 c 0 c 3 = g 2 + p 2 g 1 + p 2 p 1 g 0 + p 2 p 1 p 0 c 0... c 8 = g 7 + p 7 g 6 + p 7 p 6 g 5 + p 7 p 6 p 5 g 4 + p 7 p 6 p 5 p 4 g 3 + p 7 p 6 p 5 p 4 p 3 g 2 + p 7 p 6 p 5 p 4 p 3 p 2 g 1 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 g 0 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 c 0

30 Expanding the Carry Expression c i+1 = g i + p i c i c 1 = g 0 + p 0 c 0 c 2 = g 1 + p 1 g 0 + p 1 p 0 c 0 c 3 = g 2 + p 2 g 1 + p 2 p 1 g 0 + p 2 p 1 p 0 c 0... c 8 = g 7 + p 7 g 6 + p 7 p 6 g 5 + p 7 p 6 p 5 g 4 Even this takes only 3 gate delays + p 7 p 6 p 5 p 4 g 3 + p 7 p 6 p 5 p 4 p 3 g 2 + p 7 p 6 p 5 p 4 p 3 p 2 g 1 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 g 0 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 c 0

31 A hierarchical carry-lookahead adder with ripple-carry between blocks x y x 15 8 y 15 8 x 7 0 y 7 0 c 32 Block c 3 24 c 16 Block 1 c 8 Block 0 c 0 s s 15 8 s 7 0 [ Figure 3.16 from the textbook ]

32 A hierarchical carry-lookahead adder x y x 15 8 y 15 8 x 7 0 y 7 0 Block 3 c 24 Block 1 Block 0 c 0 G 3 P 3 G 1 P 1 G 0 P 0 s s 15 8 s 7 0 c 32 c 16 c 8 Second-level lookahead [ Figure 3.17 from the textbook ]

33 The Hierarchical Carry Expression c 8 = g 7 + p 7 g 6 + p 7 p 6 g 5 + p 7 p 6 p 5 g 4 + p 7 p 6 p 5 p 4 g 3 + p 7 p 6 p 5 p 4 p 3 g 2 + p 7 p 6 p 5 p 4 p 3 p 2 g 1 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 g 0 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 c 0

34 The Hierarchical Carry Expression c 8 = g 7 + p 7 g 6 + p 7 p 6 g 5 + p 7 p 6 p 5 g 4 + p 7 p 6 p 5 p 4 g 3 + p 7 p 6 p 5 p 4 p 3 g 2 + p 7 p 6 p 5 p 4 p 3 p 2 g 1 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 g 0 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 c 0

35 The Hierarchical Carry Expression c 8 = g 7 + p 7 g 6 + p 7 p 6 g 5 + p 7 p 6 p 5 g 4 G 0 + p 7 p 6 p 5 p 4 g 3 + p 7 p 6 p 5 p 4 p 3 g 2 + p 7 p 6 p 5 p 4 p 3 p 2 g 1 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 g 0 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 c 0 P 0

36 The Hierarchical Carry Expression c 8 = g 7 + p 7 g 6 + p 7 p 6 g 5 + p 7 p 6 p 5 g 4 G 0 + p 7 p 6 p 5 p 4 g 3 + p 7 p 6 p 5 p 4 p 3 g 2 + p 7 p 6 p 5 p 4 p 3 p 2 g 1 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 g 0 + p 7 p 6 p 5 p 4 p 3 p 2 p 1 p 0 c 0 P 0 c 8 = G 0 + P 0 c 0

37 The Hierarchical Carry Expression c 8 = G 0 + P 0 c 0 c 16 = G 1 + P 1 c 8 = G 1 + P 1 G 0 + P 1 P 0 c 0 c 24 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 c 0 c 32 = G 3 + P 3 G 2 + P 3 P 2 G 1 + P 3 P 2 P 1 G 0 + P 3 P 2 P 1 P 0 c 0

38 A hierarchical carry-lookahead adder x y x 15 8 y 15 8 x 7 0 y 7 0 Block 3 c 24 Block 1 Block 0 c 0 G 3 P 3 G 1 P 1 G 0 P 0 s s 15 8 s 7 0 c 32 c 16 c 8 Second-level lookahead [ Figure 3.17 from the textbook ]

39 Hierarchical CLA Adder Carry Logic Block 2 P1 P0 c0 p7 x7 y7 g7 x6 y6 p7g6 g6 p7p6g5 p7p6p5g4 Block 1 p7p6p5p4g3 p7p6p5p4p3g2 p7p6p5p4p3p2g1 p7p6p5p4p3p2p1g0 P0 c0 C8 5 gate delays C16 5 gate delays C24 5 Gate delays C32 5 Gate delays SECOND LEVEL HIERARCHY c16 G1 P1 G0 P0 c0 c8 P1 G0 G0 P1 P0 c0 Block 3 Block 2 Block 1 c0 p17 c17 p9 c9 p0 c1 g17 g9 g0 FIRST LEVEL HIERARCHY

40 Hierarchical CLA Critical Path Block 2 p7 x7 y7 g7 x6 y6 p7g6 g6 p7p6g5 p7p6p5g4 Block 1 p7p6p5p4g3 p7p6p5p4p3g2 p7p6p5p4p3p2g1 p7p6p5p4p3p2p1g0 G1 G0 P0 c0 c8 P1 P1 G0 G0 P1 P0 c0 c16 P1 P0 c0 P0 c0 C9 7 gate delays C17 7 gate delays C25 7 Gate delays SECOND LEVEL HIERARCHY Block 3 Block 2 Block 1 c0 p17 c17 p9 c9 p0 c1 g17 g9 g0 FIRST LEVEL HIERARCHY

41 Total Gate Delay Through a Hierarchical Carry-Lookahead Adder Is 8 gates 3 to generate all Gj and Pj +2 to generate c8, c16, c24, and c32 +2 to generate internal carries in the blocks +1 to generate the sum bits (one extra XOR)

42

43 Decimal Multiplication by 10 What happens when we multiply a number by 10? 4 x 10 =? 542 x 10 =? 1245 x 10 =?

44 Decimal Multiplication by 10 What happens when we multiply a number by 10? 4 x 10 = x 10 = x 10 = 12450

45 Decimal Multiplication by 10 What happens when we multiply a number by 10? 4 x 10 = x 10 = x 10 = You simply add a zero as the rightmost number

46 Decimal Division by 10 What happens when we divide a number by 10? 14 / 10 =? 540 / 10 =? 1240 x 10 =?

47 Decimal Division by 10 What happens when we divide a number by 10? 14 / 10 = 1 //integer division 540 / 10 = x 10 = 124 You simply delete the rightmost number

48 Binary Multiplication by 2 What happens when we multiply a number by 2? 011 times 2 =? 101 times 2 =? times 2 =?

49 Binary Multiplication by 2 What happens when we multiply a number by 2? 011 times 2 = times 2 = times 2 = You simply add a zero as the rightmost number

50 Binary Multiplication by 4 What happens when we multiply a number by 4? 011 times 4 =? 101 times 4 =? times 4 =?

51 Binary Multiplication by 4 What happens when we multiply a number by 4? 011 times 4 = times 4 = times 4 = add two zeros in the last two bits and shift everything else to the left

52 Binary Multiplication by 2 N What happens when we multiply a number by 2 N? 011 times 2 N = // add N zeros 101 times 4 = // add N zeros times 4 = // add N zeros

53 Binary Division by 2 What happens when we divide a number by 2? 0110 divided by 2 =? 1010 divides by 2 =? divides by 2 =?

54 Binary Division by 2 What happens when we divide a number by 2? 0110 divided by 2 = divides by 2 = divides by 2 = You simply delete the rightmost number

55 Decimal Multiplication By Hand [

56 Binary Multiplication By Hand [Figure 3.34a from the textbook]

57 Binary Multiplication By Hand [Figure 3.34b from the textbook]

58 Binary Multiplication By Hand [Figure 3.34c from the textbook]

59 Figure A 4x4 multiplier circuit.

60 Figure A 4x4 multiplier circuit.

61 Positive Multiplicand Example [Figure 3.36a in the textbook]

62 Positive Multiplicand Example add an extra bit to avoid overflow [Figure 3.36a in the textbook]

63 Negative Multiplicand Example [Figure 3.36b in the textbook]

64 Negative Multiplicand Example add an extra bit to avoid overflow but now it is 1 [Figure 3.36b in the textbook]

65 What if the Multiplier is Negative? Convert both to their 2's complement version This will make the multiplier positive Then Proceed as normal This will not affect the result Example: 5*(-4) = (-5)*(4)= -20

66 Binary Coded Decimal

67 Table of Binary-Coded Decimal Digits

68 Addition of BCD digits [Figure 3.38a in the textbook]

69 Addition of BCD digits The result is greater than 9, which is not a valid BCD number [Figure 3.38a in the textbook]

70 Addition of BCD digits add 6 [Figure 3.38a in the textbook]

71 Addition of BCD digits [Figure 3.38b in the textbook]

72 Addition of BCD digits The result is 1, but it should be 7 [Figure 3.38b in the textbook]

73 Addition of BCD digits add 6 [Figure 3.38b in the textbook]

74 Why add 6? Think of BCD addition as a mod 16 operation Decimal addition is mod 10 operation

75 BCD Arithmetic Rules Z = X + Y If Z <= 9, then S=Z and carry-out = 0 If Z > 9, then S=Z+6 and carry-out =1

76 Block diagram for a one-digit BCD adder [Figure 3.39 in the textbook]

77 How to check if the number is > 9?

78 A four-variable Karnaugh map x1 x2 x3 x m m m m m m m m m m m m m m m m15 x 1 x 2 x 3 x x m 0 m 1 m 5 m 3 m 2 m 6 m 4 m 12 x 2 m 13 m 7 m 15 m 14 x 1 m 8 m 9 m 11 m 10 x 4

79 How to check if the number is > 9? z3 z2 z1 z m m m m m m m m m m m m m m m m15 z 3 z z 2 1 z

80 How to check if the number is > 9? z3 z2 z1 z m m m m m m m m m m m m m m m m15 z 3 z z 2 1 z f = z 3 z 2 + z 3 z 1

81 How to check if the number is > 9? z3 z2 z1 z m m m m m m m m m m m m m m m m15 z 3 z z 2 1 z f = z 3 z 2 + z 3 z 1 In addition, also check if there was a carry f = carry-out + z 3 z 2 + z 3 z 1

82 Verilog code for a one-digit BCD adder module bcdadd(cin, X, Y, S, Cout); input Cin; input [3:0] X, Y; output reg [3:0] S; output reg Cout; reg [4:0] Z; (X, Y, Cin) begin Z = X + Y + Cin; if (Z < 10) {Cout, S} = Z; else {Cout, S} = Z + 6; end endmodule [Figure 3.40 in the textbook]

83 Circuit for a one-digit BCD adder [Figure 3.41 in the textbook]

84 Circuit for a one-digit BCD adder carry-out + z 3 z 2 + z 3 z 1 [Figure 3.41 in the textbook]

85 Circuit for a one-digit BCD adder 1 [Figure 3.41 in the textbook]

86 Circuit for a one-digit BCD adder [Figure 3.41 in the textbook]

87 Circuit for a one-digit BCD adder [Figure 3.41 in the textbook]

88 Circuit for a one-digit BCD adder 1 implicit add 6 1 [Figure 3.41 in the textbook]

89 Questions?

90 THE END

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Fast Adders CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW5

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Signed Numbers CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Decoders and Encoders CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Code Converters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Boolean Algebra CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Carry Look Ahead Adders

Carry Look Ahead Adders Carry Look Ahead Adders Lesson Objectives: The objectives of this lesson are to learn about: 1. Carry Look Ahead Adder circuit. 2. Binary Parallel Adder/Subtractor circuit. 3. BCD adder circuit. 4. Binary

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Examples of Solved Problems CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

COE 202: Digital Logic Design Combinational Circuits Part 2. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Combinational Circuits Part 2. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Combinational Circuits Part 2 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Arithmetic Circuits Adder Subtractor Carry Look Ahead Adder

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

1 Short adders. t total_ripple8 = t first + 6*t middle + t last = 4t p + 6*2t p + 2t p = 18t p

1 Short adders. t total_ripple8 = t first + 6*t middle + t last = 4t p + 6*2t p + 2t p = 18t p UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Study Homework: Arithmetic NTU IC54CA (Fall 2004) SOLUTIONS Short adders A The delay of the ripple

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS ARITHMETIC COMBINATIONAL MODULES AND NETWORKS 1 SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS HALF-ADDER AND FULL-ADDER MODULES CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES NETWORKS OF ADDER MODULES

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ NAND and NOR Logic Networks CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ NAND and NOR Logic Networks CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander

More information

Module 2. Basic Digital Building Blocks. Binary Arithmetic & Arithmetic Circuits Comparators, Decoders, Encoders, Multiplexors Flip-Flops

Module 2. Basic Digital Building Blocks. Binary Arithmetic & Arithmetic Circuits Comparators, Decoders, Encoders, Multiplexors Flip-Flops Module 2 asic Digital uilding locks Lecturer: Dr. Yongsheng Gao Office: Tech 3.25 Email: Web: Structure: Textbook: yongsheng.gao@griffith.edu.au maxwell.me.gu.edu.au 6 lecturers 1 tutorial 1 laboratory

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

Combinational Logic Design Arithmetic Functions and Circuits

Combinational Logic Design Arithmetic Functions and Circuits Combinational Logic Design Arithmetic Functions and Circuits Overview Binary Addition Half Adder Full Adder Ripple Carry Adder Carry Look-ahead Adder Binary Subtraction Binary Subtractor Binary Adder-Subtractor

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Design Examples CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 4:332:23 DIGITAL LOGIC DEIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 23 Lecture #4: Adders, ubtracters, and ALUs Vector Binary Adder [Wakerly 4 th Ed., ec. 6., p. 474] ingle

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr.

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr. Chapter 4 Dr. Panos Nasiopoulos Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. Sequential: In addition, they include storage elements Combinational

More information

Digital Logic (2) Boolean Algebra

Digital Logic (2) Boolean Algebra Digital Logic (2) Boolean Algebra Boolean algebra is the mathematics of digital systems. It was developed in 1850 s by George Boole. We will use Boolean algebra to minimize logic expressions. Karnaugh

More information

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two.

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Announcements Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Chapter 5 1 Chapter 3: Part 3 Arithmetic Functions Iterative combinational circuits

More information

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits Logic and Computer Design Fundamentals Chapter 5 Arithmetic Functions and Circuits Arithmetic functions Operate on binary vectors Use the same subfunction in each bit position Can design functional block

More information

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Chapter 03: Computer Arithmetic Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Objective To understand adder circuit Subtractor circuit Fast adder circuit 2 Adder Circuit 3 Full

More information

Number representation

Number representation Number representation A number can be represented in binary in many ways. The most common number types to be represented are: Integers, positive integers one-complement, two-complement, sign-magnitude

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Design Examples CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Synchronous Sequential Circuits Basic Design Steps CprE 281: Digital Logic Iowa State University, Ames,

More information

L8/9: Arithmetic Structures

L8/9: Arithmetic Structures L8/9: Arithmetic Structures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Rex Min Kevin Atkinson Prof. Randy Katz (Unified Microelectronics

More information

CSE370 HW3 Solutions (Winter 2010)

CSE370 HW3 Solutions (Winter 2010) CSE370 HW3 Solutions (Winter 2010) 1. CL2e, 4.9 We are asked to implement the function f(a,,c,,e) = A + C + + + CE using the smallest possible multiplexer. We can t use any extra gates or the complement

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2010 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

Binary addition by hand. Adding two bits

Binary addition by hand. Adding two bits Chapter 3 Arithmetic is the most basic thing you can do with a computer We focus on addition, subtraction, multiplication and arithmetic-logic units, or ALUs, which are the heart of CPUs. ALU design Bit

More information

Computer Architecture. ESE 345 Computer Architecture. Design Process. CA: Design process

Computer Architecture. ESE 345 Computer Architecture. Design Process. CA: Design process Computer Architecture ESE 345 Computer Architecture Design Process 1 The Design Process "To Design Is To Represent" Design activity yields description/representation of an object -- Traditional craftsman

More information

Total Time = 90 Minutes, Total Marks = 100. Total /10 /25 /20 /10 /15 /20

Total Time = 90 Minutes, Total Marks = 100. Total /10 /25 /20 /10 /15 /20 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 30th, 2006 Total Time = 90 Minutes, Total

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

Class Website:

Class Website: ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #5 Instructor: Andrew B. Kahng (lecture) Email: abk@ece.ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office:

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 3 1 Logistics If you cannot login to MarkUs, email me your UTORID and name. Check lab marks on MarkUs, if it s recorded wrong, contact Larry within a week after the lab. Quiz 1 average: 86%

More information

EECS150. Arithmetic Circuits

EECS150. Arithmetic Circuits EE5 ection 8 Arithmetic ircuits Fall 2 Arithmetic ircuits Excellent Examples of ombinational Logic Design Time vs. pace Trade-offs Doing things fast may require more logic and thus more space Example:

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Law Combinational

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits CSEE 3827: Fundamentals of Computer Systems Combinational Circuits Outline (M&K 3., 3.3, 3.6-3.9, 4.-4.2, 4.5, 9.4) Combinational Circuit Design Standard combinational circuits enabler decoder encoder

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Describe and use algorithms for integer operations based on their expansions Relate algorithms for integer

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

UNIVERSITI TENAGA NASIONAL. College of Information Technology

UNIVERSITI TENAGA NASIONAL. College of Information Technology UNIVERSITI TENAGA NASIONAL College of Information Technology BACHELOR OF COMPUTER SCIENCE (HONS.) FINAL EXAMINATION SEMESTER 2 2012/2013 DIGITAL SYSTEMS DESIGN (CSNB163) January 2013 Time allowed: 3 hours

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems Review EE 5 - omponents and Design Techniques for Digital ystems Lec 8 rithmetic II (Multiplication) David uller Electrical Engineering and omputer ciences University of alifornia, Berkeley http://www.eecs.berkeley.edu/~culler

More information

Digital System Design Combinational Logic. Assoc. Prof. Pradondet Nilagupta

Digital System Design Combinational Logic. Assoc. Prof. Pradondet Nilagupta Digital System Design Combinational Logic Assoc. Prof. Pradondet Nilagupta pom@ku.ac.th Acknowledgement This lecture note is modified from Engin112: Digital Design by Prof. Maciej Ciesielski, Prof. Tilman

More information

Resource Efficient Design of Quantum Circuits for Quantum Algorithms

Resource Efficient Design of Quantum Circuits for Quantum Algorithms Resource Efficient Design of Quantum Circuits for Quantum Algorithms Himanshu Thapliyal Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY hthapliyal@uky.edu Quantum

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Building a Computer Adder

Building a Computer Adder Logic Gates are used to translate Boolean logic into circuits. In the abstract it is clear that we can build AND gates that perform the AND function and OR gates that perform the OR function and so on.

More information

Laboratory Exercise #10 An Introduction to High-Speed Addition

Laboratory Exercise #10 An Introduction to High-Speed Addition Laboratory Exercise #10 An Introduction to High-Speed Addition ECEN 248: Introduction to Digital Design Department of Electrical and Computer Engineering Texas A&M University 2 Laboratory Exercise #10

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 EECS5 - Digital Design Lecture - Combinational Logic Circuits Part Feburary 26, 22 John Wawrzynek Spring 22 EECS5 - Lec-cl Page Combinational Logic (CL) Defined y i = f i (x,...., xn-), where x, y are

More information

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 25: Digital Arithmetic Adders Announcements Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due

More information

COE 202: Digital Logic Design Sequential Circuits Part 4. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 4. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 4 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Registers Counters Registers 0 1 n-1 A register is a group

More information

Solutions for Appendix C Exercises

Solutions for Appendix C Exercises C Solutions for Appix C Exercises 1 Solutions for Appix C Exercises C.1 A B A B A + B A B A B A + B 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 C.2 Here is the first equation: E = ((

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 28 Combinational Building Blocks Lecture 5: Announcements Lab 2 prelab due tomorrow HW due Friday HW 2 to be posted on Thursday Lecture 4 to be replayed

More information

ECE380 Digital Logic. Positional representation

ECE380 Digital Logic. Positional representation ECE380 Digital Logic Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Dr. D. J. Jackson Lecture 16-1 Positional representation First consider integers Begin with

More information

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only)

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only) CSE140 HW1 Solution (100 Points) 1 Introduction The purpose of this assignment is three-fold. First, it aims to help you practice the application of Boolean Algebra theorems to transform and reduce Boolean

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C.

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C. Numbers & Arithmetic Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See: P&H Chapter 2.4-2.6, 3.2, C.5 C.6 Example: Big Picture Computer System Organization and Programming

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

Module half adder module half_adder(output S,C,input x,y); xor(s,x,y); and(c,x,y); endmodule

Module half adder module half_adder(output S,C,input x,y); xor(s,x,y); and(c,x,y); endmodule Eric Blasko Dr. Tong Yu CSE-310 digital logic Spring 2018 Homework 4, due 5/28/2018 ( Mon ) 12 pm 1. (15 points) Textbook Problems 4.37: Write the HDL gate-level hierarchical description of a four-bit

More information

A B OUT_0 OUT_1 OUT_2 OUT_

A B OUT_0 OUT_1 OUT_2 OUT_ A B OUT_0 OUT_1 OUT_2 OUT_3 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 A Decoder is something that does the opposite of encoding; it converts the data back into its original form. This decoder converts

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization pring 201 More inary rithmetic LU 1 nnouncements Lab 4 prelab () due tomorrow Lab 5 to be released tonight 2 Example: Fixed ize 2 C ddition White stone =

More information

Digital Design for Multiplication

Digital Design for Multiplication Digital Design for Multiplication Norman Matloff October 15, 2003 c 2003, N.S. Matloff 1 Overview A cottage industry exists in developing fast digital logic to perform arithmetic computations. Fast addition,

More information

CMPUT 329. Circuits for binary addition

CMPUT 329. Circuits for binary addition CMPUT 329 Parallel Adder with Carry Lookahead and ALU Ioanis Nikolaidis (Katz & Borriello) rcuits for binary addition Full adder (carry-in to cascade for multi-bit adders) Sum = xor A xor B Cout = B +

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

UNIT II COMBINATIONAL CIRCUITS:

UNIT II COMBINATIONAL CIRCUITS: UNIT II COMBINATIONAL CIRCUITS: INTRODUCTION: The digital system consists of two types of circuits, namely (i) (ii) Combinational circuits Sequential circuits Combinational circuit consists of logic gates

More information

Lecture 10: Synchronous Sequential Circuits Design

Lecture 10: Synchronous Sequential Circuits Design Lecture 0: Synchronous Sequential Circuits Design. General Form Input Combinational Flip-flops Combinational Output Circuit Circuit Clock.. Moore type has outputs dependent only on the state, e.g. ripple

More information

Arithmetic Building Blocks

Arithmetic Building Blocks rithmetic uilding locks Datapath elements dder design Static adder Dynamic adder Multiplier design rray multipliers Shifters, Parity circuits ECE 261 Krish Chakrabarty 1 Generic Digital Processor Input-Output

More information

Review Problem 1. should be on. door state, false if light should be on when a door is open. v Describe when the dome/interior light of the car

Review Problem 1. should be on. door state, false if light should be on when a door is open. v Describe when the dome/interior light of the car Review Problem 1 v Describe when the dome/interior light of the car should be on. v DriverDoorOpen = true if lefthand door open v PassDoorOpen = true if righthand door open v LightSwitch = true if light

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - II Combinational Logic Adders subtractors code converters binary parallel adder decimal adder magnitude comparator encoders decoders multiplexers demultiplexers-binarymultiplier Parity generator

More information

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder it-liced Design Control EEC 141 F01 rithmetic Circuits Data-In Register dder hifter it 3 it 2 it 1 it 0 Data-Out Tile identical processing elements Generic Digital Processor Full-dder MEMORY Cin Full adder

More information

ECE 341. Lecture # 3

ECE 341. Lecture # 3 ECE 341 Lecture # 3 Instructor: Zeshan Chishti zeshan@ece.pdx.edu October 7, 2013 Portland State University Lecture Topics Counters Finite State Machines Decoders Multiplexers Reference: Appendix A of

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

14:332:231 DIGITAL LOGIC DESIGN. 2 s-complement Representation

14:332:231 DIGITAL LOGIC DESIGN. 2 s-complement Representation 4:332:23 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 203 Lecture #3: Addition, Subtraction, Multiplication, and Division 2 s-complement Representation RECALL

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Combina-onal Logic Chapter 4. Topics. Combina-on Circuit 10/13/10. EECE 256 Dr. Sidney Fels Steven Oldridge

Combina-onal Logic Chapter 4. Topics. Combina-on Circuit 10/13/10. EECE 256 Dr. Sidney Fels Steven Oldridge Combina-onal Logic Chapter 4 EECE 256 Dr. Sidney Fels Steven Oldridge Topics Combina-onal circuits Combina-onal analysis Design procedure simple combined to make complex adders, subtractors, converters

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

SAMPLE ANSWERS MARKER COPY

SAMPLE ANSWERS MARKER COPY Page 1 of 12 School of Computer Science 60-265-01 Computer Architecture and Digital Design Fall 2012 Midterm Examination # 1 Tuesday, October 23, 2012 SAMPLE ANSWERS MARKER COPY Duration of examination:

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

ECE 645: Lecture 2. Carry-Lookahead, Carry-Select, & Hybrid Adders

ECE 645: Lecture 2. Carry-Lookahead, Carry-Select, & Hybrid Adders ECE 645: Lecture 2 Carry-Lookahead, Carry-Select, & Hybrid Adders Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 6, Carry-Lookahead Adders Sections 6.1-6.2.

More information