CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

Size: px
Start display at page:

Download "CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design"

Transcription

1 CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19 S.1

2 Major Components of a Computer Processor Devices Control Memory Input Datapath Output Modern processor architecture styles (CSE 431) Pipelined, single issue (e.g., ARM) Pipelined, hardware controlled multiple issue superscalar Pipelined, software controlled multiple issue VLIW Pipelined, multiple issue from multiple process threads - multithreaded Sp11 CMPEN 411 L19 S.2

3 Basic Building Blocks Datapath Execution units - Adder, multiplier, divider, shifter, etc. Register file and pipeline registers Multiplexers, decoders Control Finite state machines (PLA, ROM, random logic) Interconnect Switches, arbiters, buses Memory Caches, TLBs, DRAM, buffers Sp11 CMPEN 411 L19 S.3

4 MIPS 5-Stage Pipelined (Single Issue) Datapath Fetch Decode Execute Memory WriteBack PC Read Address I$ Add IF/Dec Read Addr 1 Register Read Read Addr 2Data 1 File Write Addr Write Data Read Data 2 Dec/Exec Shift left Add ALU Exec/Mem Address Write Data D$ Read Data pipeline stage isolation register Mem/WB 1 0 Icache precharge Sign 16 Extend 32 Dcache precharge RegWrite clk Sp11 CMPEN 411 L19 S.4

5 Datapath Bit-Sliced Organization Control Flow Bit 3 Bit 2 Bit 1 Multiplexer Pipeline Register Register File Pipeline Register Multiplexer Adder Shifter Pipeline Register Pipeline Register From I$ Data Flow To/From D$ Tile identical bit-slice elements Sp11 CMPEN 411 L19 S.5 Bit 0

6 The Binary Adder A B Cin Full adder Sum Cout S = A B C i = ABC i + ABC i + ABC i + ABC i C o = AB+ BC i + AC i Sp11 CMPEN 411 L19 S.6

7 The 1-bit Binary Adder A B C in A B C in C out S carry status 1-bit Full Adder (FA) C out G = A & B P = A B K =!A &!B S kill kill propagate propagate propagate propagate generate generate S = A B C in = P C in C out = A&B A&C in B&C in = G P&C in (majority function) A VERY common operation often in the critical path Sp11 CMPEN 411 L19 S.7

8 Complimentary Static CMOS Full Adder A direct implementation in CMOS needs 28 transistors (pp.565) C o =AB+BC i +AC i, S=ABC i +!C o (A+B+C i ) V DD V DD C i A B A B A B A C i X B C i V DD C i A S C i A B B V DD A B C i A C o B 28 Transistors Sp11 CMPEN 411 L19 S.8

9 The 1-bit Binary Adder A B C in A B C in C out S carry status 1-bit Full Adder (FA) C out G = A & B P = A B K =!A &!B S kill kill propagate propagate propagate propagate generate generate S = A B C in = P C in C out = A&B A&C in B&C in = G P&C in (majority function) How can we use it to build a 64-bit adder? How can we modify it easily to build an adder/subtractor? How can we make it better (faster, lower power, smaller)? Sp11 CMPEN 411 L19 S.9

10 A 64-bit Adder/Subtractor Ripple Carry Adder (RCA) built out of 64 FAs add/subt A 0 C 0 =C in 1-bit FA S 0 Subtraction complement all subtrahend bits (xor gates) and set the low order carry-in RCA B 0 B 1 A1 A 2 C 1 1-bit FA S 1 C 2 1-bit FA S 2 advantage: simple logic, so small (low cost) B 2... C 3 disadvantage: slow (O(N) for N bits) and lots of glitching (so lots of energy consumption) B 63 A 63 C 63 1-bit FA S 63 C 64 =C out Sp11 CMPEN 411 L19 S.10

11 Ripple Carry Adder (RCA) A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0 C out =C 4 FA FA FA FA C 0 =C in S 3 S 2 S 1 S 0 T adder (N-1) T carry + T sum T = O(N) worst case delay Real Goal: Make the fastest possible carry path Sp11 CMPEN 411 L19 S.11

12 Inversion Property Inverting all inputs to a FA results in inverted values for all outputs A B A B C out FA C in C out FA C in S S!S (A, B, C in ) = S(!A,!B,!C in )!C out (A, B, C in ) = C out (!A,!B,!C in ) Sp11 CMPEN 411 L19 S.12

13 Exploiting the Inversion Property A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0 C out =C 4 FA FA FA FA C 0 =C in S 3 S 2 S 1 S 0 inverted cell regular cell Minimizes the critical path (the carry chain) by eliminating inverters between the FAs Now need two flavors of FAs Sp11 CMPEN 411 L19 S.13

14 Mirror Adder 24+4 transistors 0-propagate 1-propagate A B B A B kill A C in!c out C in!s A generate A B B A B C in C in B A C in A B C out = A&B B&C in A&C in SUM = A&B&C in C OUT &(A B C in ) Sp11 CMPEN 411 L19 S.14

15 Mirror Adder Features The NMOS and PMOS chains are completely symmetrical with a maximum of two series transistors in the carry circuitry, guaranteeing identical rise and fall transitions if the NMOS and PMOS devices are properly sized. When laying out the cell, the most critical issue is the minimization of the capacitances at node!c out (four diffusion capacitances, two internal gate capacitances, and two inverter gate capacitances). Shared diffusions can reduce the stack node capacitances. The transistors connected to C in are placed closest to the output. Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size. Sp11 CMPEN 411 L19 S.15

16 Fast Carry Chain Design The key to fast addition is a low latency carry network What matters is whether in a given position a carry is generated G i = A i & B i propagated P i = A i B i (sometimes use A i B i ) annihilated (killed) K i =!A i &!B i Giving a carry recurrence of C i+1 = G i P i &C i C 1 = G 0 P 0 &C 0 C 2 = G 1 P 1 &G 0 P 1 &P 0 &C 0 C 3 = G 2 P 2 &G 1 P 2 &P 1 &G 0 P 2 &P 1 &P 0 &C 0 C 4 = G 3 P 3 &G 2 P 3 &P 2 &G 1 P 3 &P 2 &P 1 &G 0 P 3 &P 2 &P 1 &P 0 &C 0 Sp11 CMPEN 411 L19 S.16

17 Manchester Carry Chain (MCC) Switches controlled by G i and P i!c i+1 G i Pi!C i clk Total delay of time to form the switch control signals G i and P i signal propagation delay through N switches in the worst case Sp11 CMPEN 411 L19 S.17

18 4-bit Sliced MCC Adder A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0 clk & G P & G P & G P & G P!C 4!C 0!C 3!C 2!C 1 S 3 S 2 S 1 S 0 Sp11 CMPEN 411 L19 S.18

19 8-bit MCC Adder!C 7 & 4-bit slice MCC & 4-bit slice MCC!C 0 Its really hard to beat the speed of a well designed MCC for word lengths of 8 bits or less! Sp11 CMPEN 411 L19 S.19

20 Carry Skip Adder (a.k.a. Carry Bypass Adder) A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0 C 4 FA FA FA FA C 0 C 4 S 3 S 2 S 1 S 0 BP = P 0 &P 1 &P 2 &P 3 Block Propagate If (P 0 & P 1 & P 2 & P 3 = 1) then C 4 = C 0 otherwise the block itself kills or generates the carry internally Sp11 CMPEN 411 L19 S.20

21 Carry-Skip Chain Implementation carry-out block carry-out BP block carry-in P 3 P 2 P 1 P 0!C out C in G 3 G 2 G 1 G 0 BP Sp11 CMPEN 411 L19 S.21

22 16 bit, 4-bit Block Carry Skip Adder bits 12 to 15 bits 8 to 11 bits 4 to 7 bits 0 to 3 Setup Setup Setup Setup Carry Propagation Carry Propagation Carry Propagation Carry Propagation C i,0 Sum Sum Sum Sum Worst-case delay carry from bit 0 to bit 15 = carry generated in bit 0, ripples through bits 1, 2, and 3, skips the middle two groups (B is the group size in bits), ripples in the last group from bit 12 to bit 15 T add = t setup + B t carry + ((N/B) - 1) t skip +(B-1) t carry + t sum Sp11 CMPEN 411 L19 S.22

23 Optimal Skip Block Size and Add Time Assuming one stage of ripple (t carry ) has the same delay as one skip logic stage (t skip ) and both are 1 T CSkA = 1 + B + (N/B-1) + B t setup ripple in skips ripple in t sum block 0 last block = 2B + N/B So the optimal block size, B, is dt CSkA /db = 0 (N/2) = B opt And the optimal time is Optimal T CSkA = 4 (n/2) 1 = 2 (2n) 1 Sp11 CMPEN 411 L19 S.23

24 RCA, Carry Skip Adder Comparison RCA CSkA B=6 B=5 B=4 B=2 B=3 8 bits 16 bits 32 bits 48 bits 64 bits Sp11 CMPEN 411 L19 S.24

25 Carry Skip Adder Extensions Variable block sizes A carry that is generated in, or absorbed by, one of the inner blocks travels a shorter distance through the skip blocks, so can have bigger blocks for the inner carries without increasing the overall delay C out C in Sp11 CMPEN 411 L19 S.25

26 Carry Select Adder A s B s Precompute the carry out of each block for both carry_in = 0 and carry_in = 1 (can be done for all blocks in parallel) and then select the correct one C out 4-b Setup P s G s 0 carry propagation 0 1 carry propagation 1 multiplexer C s Sum generation C in Sp11 CMPEN 411 L19 S.26 S s

27 Carry Select Adder: Critical Path bits 12 to 15 A s B s A s bits 8 to 1 B s A s bits 4 to 7 B s A s bits 0 to 3 B s Setup P s G s Setup P s G s Setup P s G s 1 Setup P s G s 0 carry 0 carry 0 carry 0 carry carry 1 carry 1 carry 1 carry 1 C out +1 mux C s +1 mux C s +1 mux C s +1 mux C s C in +1 Sum gen Sum gen Sum gen Sum gen S s S s S s S s T add = t setup + B t carry + N/B t mux + t sum Sp11 CMPEN 411 L19 S.27

28 Square Root Carry Select Adder bits 14 to 19 A s B s bits 9 to 13 A s B s A s bits 5 to 8 B s bits 2 to 4 A s Bs bits 0 to 1 As B s Setup P s G s Setup P s G s Setup P s G s Setup P s G s 1 Setup P sg s 0 carry +6 0 carry carry carry carry carry 1 carry 1 1 carry 1 1 carry 1 1 carry 1 C out +1 mux C s +1 mux C s +1 mux C s +1 mux C s +1 mux Cin C s +1 Sum gen Sum gen Sum gen Sum gen Sum gen S s S s S s S s S s T add = t setup + 2 t carry + 2N t mux + t sum Sp11 CMPEN 411 L19 S.28

29 Look-Ahead: Topology C o k, = f( A k, B k, C o k ) = G k + P k C o k 1, 1, Expanding Lookahead equations: C o k, = G k + P k ( G k 1 + P k 1 C o k 2 ), All the way: C o k, = G k + P k ( G k 1 + P k 1 ( + P 1 ( G 0 + P 0 C i 0 ))), Sp11 CMPEN 411 L19 S.29

30 LookAhead - Basic Idea A 0, B 0 A 1, B 1 A N-1, B N-1 C i,0 P 0 C i,1 P 1 C i, N-1 P N-1 S 0 S 1 S N-1 Sp11 CMPEN 411 L19 S.30

31 Look-Ahead: Topology C o k, = G k + P k ( G k 1 + P k 1 ( + P 1 ( G 0 + P 0 C i 0 ))) V DD, G 3 G 2 G 1 G 0 C i,0 C o,3 P 0 P 1 P 2 P 3 Sp11 CMPEN 411 L19 S.31

32 Logarithmic Look-Ahead Adder A 0 F A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 0 A 1 t p N A 2 A 3 A 4 A 5 A 6 A 7 F t p log 2 (N) Sp11 CMPEN 411 L19 S.32

33 Carry Lookahead Trees C o 2, = C o 1 C o 0, = G 0 + P 0 C i, 0, = G 1 + P 1 G 0 + P 1 P 0 C i, 0 G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 C i 0 = ( G 2 + P 2 G 1 ) + ( P 2 P 1 )( G 0 + P 0 C i 0 ) = G 2:1 + P 2:1 C o 0,,, Can continue building the tree hierarchically. Sp11 CMPEN 411 L19 S.33

34 Carry Operator Define carry operator on (G,P) signal pairs (G,P ) (G,P ) G (G,P) where G = G P &G P = P &P G!G P is associative, i.e., [(g,p ) (g,p )] (g,p ) = (g,p ) [(g,p ) (g,p )] Sp11 CMPEN 411 L19 S.34

35 PPA (Partially Prefix Adder) General Structure Given P and G terms for each bit position, computing all the carries is equal to finding all the prefixes in parallel (G 0,P 0 ) (G 1,P 1 ) (G 2,P 2 ) (G N-2,P N-2 ) (G N-1,P N-1 ) Since is associative, we can group them in any order P i, G i logic (1 unit delay) C i parallel prefix logic tree (1 unit delay per level) S i logic (1 unit delay) Measures to consider number of cells tree cell depth (time) tree cell area cell fan-in and fan-out max wiring length wiring congestion delay path variation (glitching) Sp11 CMPEN 411 L19 S.35

36 Brent-Kung PPA G 15 p 15 G 14 p 14 G 13 p 13 G 12 P 12 G 11 p 11 G 10 P 10 G 9 p 9 G 8 P 8 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 4 G 3 P 3 G 2 p 2 G 1 P 1 G 0 P 0 C 16 C 15 C 14 C 13 C 12 C 11 C 10 C 9 C 8 C 7 C 6 C 5 C 4 C 3 C 2 C 1 Sp11 CMPEN 411 L19 S.36

37 A Faster Yet PPA Brent-Kung (BK) adder has the time bound of T BK = 1 + (2log N 2) + 1 There are even faster PPA approaches that are used in most modern day machines for operands of 32 bits or greater Kogge-Stone (KS) faster pp tree (logn for KS versus 2logN-2 for BK) fan-out of carry cell limited to two takes more cells and has more wiring Sp11 CMPEN 411 L19 S.37

38 Kogge-Stone PPF Adder G 15 P 15 G 14 P 14 G 13 P 13 G 12 P 12 G 11 P 11 G 10 P 10 G 9 P 9 G 8 P 8 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 4 G 3 P 3 G 2 P 2 G 1 P 1 G 0 P 0 C in C 16 C 15 C 14 C 13 C 12 C 11 C 10 C 9 C 8 C 7 C 6 C 5 C 4 C 3 C 2 C 1 Sp11 CMPEN 411 L19 S.38 T add = t setup + log 2 N t + t sum

39 PPA Comparisons Measure BK PPA N=64 KS PPA N=64 # of cells 2N logn 129 NlogN - N tree depth 2logN logn 6 tree area (N/2) * (2logN -2) 320 N * logn 384 (WxH) cell fan-in cell fan-out logn max wire N/4 16 N/2 32 length wiring sparse dense density glitching high low Sp11 CMPEN 411 L19 S.39

40 More Adder Comparisons RCA CSkA KS PPA bits 16 bits 32 bits 48 bits 64 bits Sp11 CMPEN 411 L19 S.40

41 State of art Sp11 CMPEN 411 L19 S.41

42 Next Lecture and Reminders Next lecture Multiplier Design - Reading assignment Rabaey, et al, 11.4 Sp11 CMPEN 411 L19 S.42

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 VLSI Design Adder Design [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 Major Components of a Computer Processor Devices Control Memory Input Datapath

More information

CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design

CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design CSE477 VLSI Digital Circuits Fall 22 Lecture 2: Adder Design Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg477 [Adapted from Rabaey s Digital Integrated Circuits, 22, J. Rabaey et al.] CSE477

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 The -bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder it-liced Design Control EEC 141 F01 rithmetic Circuits Data-In Register dder hifter it 3 it 2 it 1 it 0 Data-Out Tile identical processing elements Generic Digital Processor Full-dder MEMORY Cin Full adder

More information

Arithmetic Building Blocks

Arithmetic Building Blocks rithmetic uilding locks Datapath elements dder design Static adder Dynamic adder Multiplier design rray multipliers Shifters, Parity circuits ECE 261 Krish Chakrabarty 1 Generic Digital Processor Input-Output

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

Hw 6 due Thursday, Nov 3, 5pm No lab this week

Hw 6 due Thursday, Nov 3, 5pm No lab this week EE141 Fall 2005 Lecture 18 dders nnouncements Hw 6 due Thursday, Nov 3, 5pm No lab this week Midterm 2 Review: Tue Nov 8, North Gate Hall, Room 105, 6:30-8:30pm Exam: Thu Nov 10, Morgan, Room 101, 6:30-8:00pm

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits Digital Integrated Circuits Design Perspective rithmetic Circuits Reference: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, nantha Chandrakasan and orivoje Nikolic Disclaimer: slides adapted

More information

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 25: Digital Arithmetic Adders Announcements Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL

More information

Lecture 4. Adders. Computer Systems Laboratory Stanford University

Lecture 4. Adders. Computer Systems Laboratory Stanford University Lecture 4 Adders Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 2006 Mark Horowitz Some figures from High-Performance Microprocessor Design IEEE 1 Overview Readings Today

More information

Computer Architecture 10. Fast Adders

Computer Architecture 10. Fast Adders Computer Architecture 10 Fast s Ma d e wi t h Op e n Of f i c e. o r g 1 Carry Problem Addition is primary mechanism in implementing arithmetic operations Slow addition directly affects the total performance

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Where are we? Data Path Design

Where are we? Data Path Design Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 14: Designing for Low Power [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12 CMPEN

More information

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath

More information

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1 ALUs and Data Paths Subtitle: How to design the data path of a processor. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 Lecture overview General Data Path of a multifunction ALU Copyright 2006 - Joanne DeGroat,

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture.

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture. EE4-Fall 2 Digital Integrated ircuits dders Lecture 2 dders 4 4 nnouncements Midterm 2: Thurs. Nov. 4 th, 6:3-8:pm Exam starts at 6:3pm sharp Review session: Wed., Nov. 3 rd, 6pm n Intel Microprocessor

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 2001 Advanced Digital Integrated Circuits EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 EECS5 - Digital Design Lecture - Combinational Logic Circuits Part Feburary 26, 22 John Wawrzynek Spring 22 EECS5 - Lec-cl Page Combinational Logic (CL) Defined y i = f i (x,...., xn-), where x, y are

More information

EE141- Spring 2004 Digital Integrated Circuits

EE141- Spring 2004 Digital Integrated Circuits EE141- pring 2004 Digital Integrated ircuits Lecture 19 Dynamic Logic - Adders (that is wrap-up) 1 Administrative tuff Hw 6 due on Th No lab this week Midterm 2 next week Project 2 to be launched week

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS B. Venkata Sreecharan 1, C. Venkata Sudhakar 2 1 M.TECH (VLSI DESIGN)

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Part II Addition / Subtraction

Part II Addition / Subtraction Part II Addition / Subtraction Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

Part II Addition / Subtraction

Part II Addition / Subtraction Part II Addition / Subtraction Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

L8/9: Arithmetic Structures

L8/9: Arithmetic Structures L8/9: Arithmetic Structures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Rex Min Kevin Atkinson Prof. Randy Katz (Unified Microelectronics

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

Design of System Elements. Basics of VLSI

Design of System Elements. Basics of VLSI Design of System Elements Basics of VLSI A Generic Digital Machine MEMORY INPUT-OUT PUT CONTROL DATAPATH Jamadagni H S ITC/V1/2004 2of 50 Building Blocks for Digital Architectures Arithmetic unit Data

More information

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

C.K. Ken Yang UCLA Courtesy of MAH EE 215B Decoders: Logical Effort Applied C.K. Ken Yang UCLA yang@ee.ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 6.2.2 (Ratio-ed logic) W&H 6.2.2 Overview We have now gone through the basics of decoders,

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Digital Logic Our goal for the next few weeks is to paint a a reasonably complete picture of how we can go from transistor

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS ARITHMETIC COMBINATIONAL MODULES AND NETWORKS 1 SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS HALF-ADDER AND FULL-ADDER MODULES CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES NETWORKS OF ADDER MODULES

More information

3. Combinational Circuit Design

3. Combinational Circuit Design CSEE 3827: Fundamentals of Computer Systems, Spring 2 3. Combinational Circuit Design Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp/ Outline (H&H 2.8,

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 18 CMOS Sequential Circuits - 1 guntzel@inf.ufsc.br

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 8. Design Tradeoffs 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L08: Design Tradeoffs, Slide #1 There are a large number of implementations

More information

EECS150 - Digital Design Lecture 22 - Arithmetic Blocks, Part 1

EECS150 - Digital Design Lecture 22 - Arithmetic Blocks, Part 1 EECS150 - igital esign Lecture 22 - Arithmetic Blocks, Part 1 April 10, 2011 John Wawrzynek Spring 2011 EECS150 - Lec23-arith1 Page 1 Each cell: r i = a i XOR b i XOR c in Carry-ripple Adder Revisited

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 RHK.F95 1 Technology Trends: Microprocessor Capacity 100000000 10000000 Pentium Transistors 1000000

More information

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 8. Design Tradeoffs 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L08: Design Tradeoffs, Slide #1 There are a large number of implementations

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits CSEE 3827: Fundamentals of Computer Systems Combinational Circuits Outline (M&K 3., 3.3, 3.6-3.9, 4.-4.2, 4.5, 9.4) Combinational Circuit Design Standard combinational circuits enabler decoder encoder

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

Logarithmic Circuits

Logarithmic Circuits Logarithmic Circuits Binary Up Counter Logarithmic Circuits WHAt T Q T C Toggle Flip Flop @(posedge clk) If T=, toggle output Q If T=, hold old Q -bit binary counter TC=T Q T Q T Q T Q T T T T T C C C

More information

Chapter 7. VLSI System Components

Chapter 7. VLSI System Components VLSI Design Chapter 7 VLSI System Components Jin-Fu Li Chapter 7 VLSI System Components Introduction Datapath Operators Memory Elements Control Structures 2 System-Level Hierarchy System (Top) Complex

More information

Number representation

Number representation Number representation A number can be represented in binary in many ways. The most common number types to be represented are: Integers, positive integers one-complement, two-complement, sign-magnitude

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

Datapath Component Tradeoffs

Datapath Component Tradeoffs Datapath Component Tradeoffs Faster Adders Previously we studied the ripple-carry adder. This design isn t feasible for larger adders due to the ripple delay. ʽ There are several methods that we could

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization rithmetic Logic Unit (LU) and Register File Prof. Michel. Kinsy Computing: Computer Organization The DN of Modern Computing Computer CPU Memory System LU Register File Disks

More information

Binary addition by hand. Adding two bits

Binary addition by hand. Adding two bits Chapter 3 Arithmetic is the most basic thing you can do with a computer We focus on addition, subtraction, multiplication and arithmetic-logic units, or ALUs, which are the heart of CPUs. ALU design Bit

More information

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 6 for ENEL 353 Fall 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2017 SN s ENEL 353 Fall 2017 Slide Set 6 slide

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Law Combinational

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

Review for Final Exam

Review for Final Exam CSE140: Components and Design Techniques for Digital Systems Review for Final Exam Mohsen Imani CAPE Please submit your evaluations!!!! RTL design Use the RTL design process to design a system that has

More information

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Signature: EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. You may use

More information

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture. AMD Quad Core CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

More information

Computer Architecture. ESE 345 Computer Architecture. Design Process. CA: Design process

Computer Architecture. ESE 345 Computer Architecture. Design Process. CA: Design process Computer Architecture ESE 345 Computer Architecture Design Process 1 The Design Process "To Design Is To Represent" Design activity yields description/representation of an object -- Traditional craftsman

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

EECS150 - Digital Design Lecture 25 Shifters and Counters. Recap

EECS150 - Digital Design Lecture 25 Shifters and Counters. Recap EECS150 - Digital Design Lecture 25 Shifters and Counters Nov. 21, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John

More information

ECE/CS 250 Computer Architecture

ECE/CS 250 Computer Architecture ECE/CS 250 Computer Architecture Basics of Logic Design: Boolean Algebra, Logic Gates (Combinational Logic) Tyler Bletsch Duke University Slides are derived from work by Daniel J. Sorin (Duke), Alvy Lebeck

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 4:332:23 DIGITAL LOGIC DEIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 23 Lecture #4: Adders, ubtracters, and ALUs Vector Binary Adder [Wakerly 4 th Ed., ec. 6., p. 474] ingle

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April Objective - Get familiar with the Xilinx ISE webpack tool - Learn how to design basic combinational digital components -

More information

ECE 250 / CPS 250 Computer Architecture. Basics of Logic Design Boolean Algebra, Logic Gates

ECE 250 / CPS 250 Computer Architecture. Basics of Logic Design Boolean Algebra, Logic Gates ECE 250 / CPS 250 Computer Architecture Basics of Logic Design Boolean Algebra, Logic Gates Benjamin Lee Slides based on those from Andrew Hilton (Duke), Alvy Lebeck (Duke) Benjamin Lee (Duke), and Amir

More information

CMP 334: Seventh Class

CMP 334: Seventh Class CMP 334: Seventh Class Performance HW 5 solution Averages and weighted averages (review) Amdahl's law Ripple-carry adder circuits Binary addition Half-adder circuits Full-adder circuits Subtraction, negative

More information

EECS150 - Digital Design Lecture 21 - Design Blocks

EECS150 - Digital Design Lecture 21 - Design Blocks EECS150 - Digital Design Lecture 21 - Design Blocks April 3, 2012 John Wawrzynek Spring 2012 EECS150 - Lec21-db3 Page 1 Fixed Shifters / Rotators fixed shifters hardwire the shift amount into the circuit.

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture : dders Slides courtesy of Deming hen Slides based on the initial set from David Harris MOS VLSI Design Outline Single-bit ddition arry-ripple dder arry-skip dder arry-lookahead dder arry-select

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Review for the Final Stephen A. Edwards Columbia University Summer 25 The Final 2 hours 8 problems Closed book Simple calculators are OK, but unnecessary One double-sided

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders ECE 645: Lecture 3 Conditional-Sum Adders and Parallel Prefix Network Adders FPGA Optimized Adders Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 7.4, Conditional-Sum

More information

Computer Architecture. ECE 361 Lecture 5: The Design Process & ALU Design. 361 design.1

Computer Architecture. ECE 361 Lecture 5: The Design Process & ALU Design. 361 design.1 Computer Architecture ECE 361 Lecture 5: The Design Process & Design 361 design.1 Quick Review of Last Lecture 361 design.2 MIPS ISA Design Objectives and Implications Support general OS and C- style language

More information

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 9. Datapath Design Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 2, 2017 ECE Department, University of Texas at Austin

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information