Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

Size: px
Start display at page:

Download "Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements"

Transcription

1 Analysis and Design of Analog Integrated Circuits Lecture 14 Noise Spectral Analysis for Circuit Elements Michael H. Perrott March 18, 01 Copyright 01 by Michael H. Perrott All rights reserved.

2 Recall Frequency Domain View of Random Process It is valid to take the FFT of a sequence from a given trial However, notice that the FFT result changes across trials - Fourier Transform of a random process is undefined! - We need a new tool called spectral analysis noise[n] (Trial 1) noise[n] (Trial ) noise[n] (Trial 3) n n n Magnitude of fft of noise[n] (Trial 1) λ Magnitude of fft of noise[n] (Trial ) λ Magnitude of fft of noise[n] (Trial 3) λ

3 Expectation of a Random Variable The expectation of random variable y is defined as - We see that: E(y) = E(y) = E((y μ y ) )= Z Z Z yf y (y)dy yf y (y)dy = μ y - In the case where y = 0 (i.e., the mean of y is 0) E(y )=E((y μ y ) )=σ y (y μ y ) f y (y)dy = σ y E(y ) is called the second moment of random variable y 3

4 Independence of Random Variables Consider two random variables x and y - x and y are said to be independent if and only if Where f(x,y) is the joint probability distribution of x and y - which implies E(xy) = Z f(x, y) =f(x)f(y) xyf(x, y)dxdy = Z xf(x)dx Z yf(x)dy E(xy) =E(x)E(y) The above relationship is also true under a less strict condition called linear independence If x and y are zero mean, then E(xy) = 0 implies that x and y are uncorrelated 4

5 Autocorrelation and Spectral Density (Discrete-Time) Assume a zero mean, stationary random process x[n]: - The autocorrelation of x[n] is defined as: Note that: R xx [m] =E(x[n] x[n + m]) R xx [0] = E(x [n]) = σ x - The power spectral density of random process x[n] is defined as S x (λ) = X m= R xx [m]e jπλm Note that = ft, where f is frequency (in Hz) and T is the sample period of the process (in units of seconds) Power spectral density of x[n] is essentially the (Discrete- Time) Fourier Transform of the autocorrelation of x[n] 5

6 Implications of Independence (Discrete-Time) If the samples of a zero mean random process, x[n], are independent of each other, this implies R xx [m] =E(x[n]x[n + m]) ½ E(x = [n]) = σx, m =0 E(x[n])E(x[n + m]) = 0, m 6= 0 The corresponding power spectral density is then calculated as X S x (λ) = R xx [m]e jπλm = σx m= - This is a known as a white random process, whose spectral density is flat across all frequencies 6

7 Understanding White Random Processes noise[n] (Trial = 1) Histogram of 100 samples Independence between samples implies that previous samples provide no benefit in trying to predict the value of the current sample For Gaussian white processes, the best we can do is use the Gaussian PDF to determine the probability of a sample being within a given range - Variance of the process is a n Histogram of 1,000 samples Histogram of 10,000 samples Histogram of 1,000,000 samples sample value sample value sample value sample value key parameter 7

8 Spectral Density of a White Process (Discrete-Time) noise[n] (Trial 1) Magnitude of fft of noise[n] (Trial 1) n λ Spectral Density of noise[n] σ x λ The spectral density of a white process is well defined - This is in contrast to the FFT of a white process, which varies between different trials of the process - Note that the spectral density is double-sided since it is based on the Fourier Transform (which is defined for both positive and negative frequencies) 8

9 Autocorrelation and Spectral Density (Continuous-Time) Assume a zero mean, stationary random process x(t): - The autocorrelation of x(t) is defined as: Note that R xx (τ) =E(x(t) x(t + τ)) R xx (0) = E(x (t)) = σ x - The power spectral density of random process x(t) is defined as S x (f) = Z τ= R xx (τ)e jπfτ dτ Again, the power spectral density corresponds to the Fourier Transform of the autocorrelation function of the random process x(t) 9

10 White Random Process (Continuous-Time) Assume a zero mean, stationary random process x(t): - Assuming that the samples of a random process, x(t), are independent of each other, this implies R xx (τ) =E(x(t)x(t + τ)) = N o δ(t) Where (t) is known as the delta function with properties: δ(t) =0 fort 6= 0, - The power spectral density of x(t) is then: S x (f) = Z τ= Z δ(t)dt =1 R xx (τ)e jπfτ dτ = N o As with a discrete-time white process, a continuous-time white process has flat spectral density across all frequencies Note that the variance of a white process is actually infinite Practical white noise is bandlimited and has finite variance 10

11 Spectral Density of a White Process (Continuous-Time) Noise(t) (Trial 1) Spectral Density of Noise(t) 0 t N o 0 f As with a discrete-time, white process, the spectral density of a continuous-time, white process is well defined - It is flat with frequency - For analog circuits, units of N o are V /Hz or A /Hz - It is double-sided, meaning that it is defined for both positive and negative frequencies 11

12 Spectral Density Calculations Involving Filtering S x (f) S y (f) N o x(t) H(s) y(t) 4N o 0 f H(f) -f -f 1 0 f 1 f f -f -f 1 0 f 1 f Assuming an input random process x(t) is fed into a linear, time-invariant filter H(s), the resulting power spectral density of the output random process y(t) is calculated as: S y (f) = H(f) S x (f) - Note that filtering a white random process leads to a new random process that is no longer white The output spectral density is no longer flat across frequency f Different output samples in time are no longer independent 1

13 Spectral Density Calculations Involving Power S x (f) S y (f) N o x(t) H(s) y(t) 4N o 0 f H(f) -f -f 1 0 f 1 f f The power (i.e., variance) of a zero mean random process corresponds to the integration of its power spectral density P y = σ y = R yy (0) = -f -f 1 Z 0 f 1 f S y (f)df = - Note that we can consider the power in certain frequency bands by changing the value of f 1 and f - In the above example: f Z f1 f P y =4N o (f f 1 ) S y (f)+ Z f f 1 S y (f) 13

14 Double-Sided Versus Single-Sided Spectral Densities S x (f) S y (f) N o x(t) H(s) y(t) 8N o 0 f H(f) 0 f 1 f f It turns out that power spectral densities are always symmetric about positive and negative frequencies Single-sided spectral densities offer a short cut in which only the positive frequencies are drawn - In order to conserve power, the spectral density magnitude is doubled - For the above example: 0 f 1 f f P y =8N o (f f 1 ) We will use only single-sided spectral densities in this class 14

15 Noise in Resistors Corresponds to white noise (i.e., thermal noise) in terms of either voltage or current R v n R i n v n =4kTR f i n =4kT 1 R f - Circuit designers like to use the above notation in which v n n and i n i n represent power in a given bandwidth f in units of Volts or Amps, respectively k = J/K - k is Boltzmann s constant: - T is temperature (in Kelvins) Usually assume room temperature of 7 degrees Celsius T =300K 15

16 Noise In Inductors and Capacitors Ideal capacitors and inductors have no noise! C L In practice, however, they will have parasitic resistance - Induces noise - Parameterized by adding resistances in parallel/series with inductor/capacitor Include parasitic resistor noise sources 16

17 Noise in CMOS Transistors (Assumed in Saturation) G I D D Transistor Noise Sources Drain Noise (Thermal and 1/f) S Gate Noise (Induced and Routing Parasitic) Modeling of noise in transistors includes several noise sources - Drain noise Thermal and 1/f influenced by transistor size and bias - Gate noise Induced from channel influenced by transistor size and bias Caused by routing resistance to gate (including resistance of polysilicon gate) Can be made negligible with proper layout such as fingering of devices We will ignore gate noise in this class 17

18 Drain Noise Thermal (Assume Device in Saturation) i nd V GS G V D >ΔV S D Thermally agitated carriers in the channel cause a randomly varying current =4kTγg dso f th i nd - is called excess noise factor = /3 in long channel = to 3 (or higher!) in short channel MOS devices - g dso will be discussed shortly i nd Δf 4kTγg dso (Note: g dso = g m /α) f 18

19 Drain Noise 1/f (Assume Device in Saturation) i nd V GS G V D >ΔV S D Traps at channel/oxide interface randomly capture/release carriers i nd Δf - Parameterized by K f K f provided by fab Sometimes K f of PMOS << K f of NMOS due to buried channel 4kTγg dso - To minimize: want large area (high WL) drain 1/f noise 1/f noise corner frequency drain thermal noise f 19

20 Drain-Source Conductance: g dso g dso is defined as channel resistance with V ds =0 - Transistor in triode, so that dv ds g dso = di d Vds =0 = μ n C ox W L (V gs V T ) - Ideally equals g m, but effects such as velocity saturation can cause g dso to be different than g m 0

21 Plot of g m and g ds versus V gs for 0.18 NMOS Device 4 Transconductances g m and g do versus Gate Voltage V gs I d 3.5 V gs M 1 W L = 1.8μ 0.18μ Transconductance (milliamps/volts) g dso g d0 =μ n C ox W/L(V gs -V T ) g m (simulated in Hspice) Gate Voltage V gs (Volts) For V gs bias voltages around 1. V: α = g m 1 g dso 1

22 Plot of g m and g ds versus I dens for 0.18 NMOS Device Transconductances g m and g do versus Current Density 4 I d 3.5 V gs M 1 W L = 1.8μ 0.18μ Transconductance (milliamps/volts) g dso g d0 =μ n C ox W/L(V gs -V T ) g m (simulated in Hspice) Current Density (microamps/micron)

23 Key Noise Sources for Noise Analysis v ng =4kTR G f v nd R D v nd =4kTR D f R G v ng v gs C gs g m v gs g mb v s r o i nd I R D D R G V out v s v ns v ns =4kTR S f V in R S R S Transistor drain noise: i nd =4kTγg dso f + K f f Thermal noise g m WLC ox 1/f noise f 3

24 Useful References on MOSFET Noise B. Wang et. al., MOSFET Thermal Noise Modeling for Analog Integrated Circuits, JSSC, July 1994 Jung-Suk Goo, High Frequency Noise in CMOS Low Noise Amplifiers, PhD Thesis, Stanford University, August Jung-Suk Goo et. al., The Equivalence of van der Ziel and BSIM4 Models in Modeling the Induced Gate Noise of MOSFETS, IEDM 000, Todd Sepke, Investigation of Noise Sources in Scaled CMOS Field-Effect Transistors, MS Thesis, MIT, June

25 Input Referral of Noise V in K V out V in K V out v ns 1 K v ns It is often convenient to input refer the impact of noise when performing noise analysis in circuits - To justify the above, recall that filtering a random process x(t) leads to an output random process y(t) such that S y (f) = H(f) S x (f) For the case where H(f) = K (i.e., a simple gain factor): S y (f) = K S x (f) S x (f) = 1 K S y(f) 5

26 Example: Common Source Amplifier v nd R D Input-refer the noise sources (apply superposition) R D V out V out i nd V in V in 1 g m i nd 1 ((R D r o )g m ) v nd Note that we will always assume that different circuit elements produce uncorrelated noise Can directly add the voltage noise sources (in power, not voltage) if they are uncorrelated V in 1 g m i nd 1 ((R D r o )g m ) v nd R D V out 6

27 Summary Power spectral density provides a rigorous approach to describing the frequency domain behavior of the ensemble behavior of stationary, ergodic (zero mean) random processes - Key concepts: Expectation, Autocorrelation, Fourier Transform, Correlation, Filtering Circuit designers like the following notation - Single-sided rather than double-sided spectra - Voltage and current noise power denoted as and v n i n Key noise properties of circuit elements - Resistor: thermal noise (white noise) - MOS transistor: thermal + 1/f noise Useful analysis tool: input referral of noise sources - Assumption of uncorrelated noise from different elements allows their power (i.e., variance) to be added 7

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers 6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers Michael Perrott Massachusetts Institute of Technology March 8, 2005 Copyright 2005 by Michael H. Perrott Notation for Mean,

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Fundamentals of Noise

Fundamentals of Noise Fundamentals of Noise V.Vasudevan, Department of Electrical Engineering, Indian Institute of Technology Madras Noise in resistors Random voltage fluctuations across a resistor Mean square value in a frequency

More information

Lecture 14: Electrical Noise

Lecture 14: Electrical Noise EECS 142 Lecture 14: Electrical Noise Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2008 by Ali M. Niknejad A.M.Niknejad University of California, Berkeley EECS 142 Lecture 14 p.1/20

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Transistor Noise Lecture 14, High Speed Devices

Transistor Noise Lecture 14, High Speed Devices Transistor Noise 016-03-03 Lecture 14, High Speed Devices 016 1 Transistor Noise A very brief introduction 016-03-0 Lecture 13, High Speed Devices 016 Summary hybrid p Noise is a randomly varying voltage/current

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

ECE-340, Spring 2015 Review Questions

ECE-340, Spring 2015 Review Questions ECE-340, Spring 2015 Review Questions 1. Suppose that there are two categories of eggs: large eggs and small eggs, occurring with probabilities 0.7 and 0.3, respectively. For a large egg, the probabilities

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions Ralf Brederlow 1, Georg Wenig 2, and Roland Thewes 1 1 Infineon Technologies, Corporate Research, 2 Technical

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

Workshop WMB. Noise Modeling

Workshop WMB. Noise Modeling Workshop WMB Noise Modeling Manfred Berroth, Markus Grözing, Stefan Heck, Alexander Bräckle University of Stuttgart, Germany WMB (IMS) Parameter Extraction Strategies For Compact Transistor Models IMS

More information

Transistor Noise Lecture 10 High Speed Devices

Transistor Noise Lecture 10 High Speed Devices Transistor Noise 1 Transistor Noise A very brief introduction to circuit and transistor noise. I an not an expert regarding noise Maas: Noise in Linear and Nonlinear Circuits Lee: The Design of CMOS RFIC

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Open-loop Gain: g m r o

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Lecture 28 Field-Effect Transistors

Lecture 28 Field-Effect Transistors Lecture 8 Field-Effect Transistors Field-Effect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use small-signal equialent

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS 1. Define random process? The sample space composed of functions of time is called a random process. 2. Define Stationary process? If a random process is divided

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS ) Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS ) 1 Simulation Review: Circuit Fixed V GS, Sweep V DS I

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

MOSFET Physics: The Long Channel Approximation

MOSFET Physics: The Long Channel Approximation MOSFET Physics: The ong Channel Approximation A basic n-channel MOSFET (Figure 1) consists of two heavily-doped n-type regions, the Source and Drain, that comprise the main terminals of the device. The

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

7.7 The Schottky Formula for Shot Noise

7.7 The Schottky Formula for Shot Noise 110CHAPTER 7. THE WIENER-KHINCHIN THEOREM AND APPLICATIONS 7.7 The Schottky Formula for Shot Noise On p. 51, we found that if one averages τ seconds of steady electron flow of constant current then the

More information

in Electronic Devices and Circuits

in Electronic Devices and Circuits in Electronic Devices and Circuits Noise is any unwanted excitation of a circuit, any input that is not an information-bearing signal. Noise comes from External sources: Unintended coupling with other

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

pickup from external sources unwanted feedback RF interference from system or elsewhere, power supply fluctuations ground currents

pickup from external sources unwanted feedback RF interference from system or elsewhere, power supply fluctuations ground currents Noise What is NOISE? A definition: Any unwanted signal obscuring signal to be observed two main origins EXTRINSIC NOISE examples... pickup from external sources unwanted feedback RF interference from system

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Fig 1: Stationary and Non Stationary Time Series

Fig 1: Stationary and Non Stationary Time Series Module 23 Independence and Stationarity Objective: To introduce the concepts of Statistical Independence, Stationarity and its types w.r.to random processes. This module also presents the concept of Ergodicity.

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i- EECS40 Spring 010 Lecture 1: Matching Elad Alon Dept. of EECS Offset V i+ V i- To achieve zero offset, comparator devices must be perfectly matched to each other How well-matched can the devices be made?

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two - 6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16] Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

Thermal noise in field-effect devices

Thermal noise in field-effect devices Thermal noise in field-effect devices J. W. Haslett, M.Sc, and F. N. Trofimenkoff, Ph.D. Abstract Thermal-noise calculations for both junction-gate and m.o.s. field-effect transistors are performed using

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1 Lecture 32 Improved OpenLoop Comparators and es (3/28/1) Page 321 LECTURE 32 IMPROVED OPENLOOP COMPARATORS AND LATCHES LECTURE ORGANIZATION Outline Autozeroing Hysteresis Simple es Summary CMOS Analog

More information

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits M. Baraani Dastjerdi and H. Krishnaswamy CoSMIC Lab, Columbia University, New

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues EE105 - Fall 006 Microelectronic evices and Circuits Prof. Jan M. Rabaey (jan@eecs Lecture 8: MOS Small Signal Model Some Administrative Issues REIEW Session Next Week Tu Sept 6 6:00-7:30pm; 060 alley

More information

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 189 197 MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations S. EFTIMIE 1, ALEX. RUSU

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

Electronics and Communication Exercise 1

Electronics and Communication Exercise 1 Electronics and Communication Exercise 1 1. For matrices of same dimension M, N and scalar c, which one of these properties DOES NOT ALWAYS hold? (A) (M T ) T = M (C) (M + N) T = M T + N T (B) (cm)+ =

More information

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components Michael H. Perrott February 11, 2004 Copyright 2004 by Michael H.

More information

EE382M-14 CMOS Analog Integrated Circuit Design

EE382M-14 CMOS Analog Integrated Circuit Design EE382M-14 CMOS Analog Integrated Circuit Design Lecture 3, MOS Capacitances, Passive Components, and Layout of Analog Integrated Circuits MOS Capacitances Type of MOS transistor capacitors Depletion capacitance

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2 Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + = is (A) 1 (B) 2 (C) 3 (D) 4 2. The Fourier series of a real periodic function has only P. Cosine terms if it is

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of

More information