High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

Size: px
Start display at page:

Download "High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components"

Transcription

1 High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components Michael H. Perrott February 11, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. 1

2 Determine Voltage and Current At Different Positions Z L Incident Wave V+e jwt e jkz E x y x I+e jwt e jkz H y z Z L Reflected Wave H y E x V-e jwt e -jkz z I-e jwt e -jkz L 0 Incident and reflected waves must be added together 2

3 Determine Voltage and Current At Different Positions Z L Incident Wave V+e jwt e jkz E x y x I+e jwt e jkz H y z Z L Reflected Wave H y E x V-e jwt e -jkz z I-e jwt e -jkz L 0 3

4 Define Generalized Reflection Coefficient Similarly: 4

5 A Closer Look at (z) Recall L is Im{Γ(z)} Note: Γ L Γ L Δ = 2kz We can view (z) as a complex number that rotates clockwise as z (distance from the load) increases 0 Γ(z) Γ L Γ L Re{Γ(z)} 5

6 Calculate V max and V min Across The Transmission Line We found that So that the max and min of V(z,t) are calculated as We can calculate this geometrically! 6

7 A Geometric View of 1 + (z) Im{1+Γ(z)} 1+Γ(z) Γ L Γ(z) 0 1 Re{1+Γ(z)} 7

8 Reflections Cause Amplitude to Vary Across Line Equation: Graphical representation: direction of travel t V + e jwt e jkz z λ 1 + Γ(z) max 1+Γ(z) 1+Γ(0) z 0 min 1+Γ(z) 8

9 Voltage Standing Wave Ratio (VSWR) Definition For passive load (and line) We can infer the magnitude of the reflection coefficient based on VSWR 9

10 Reflections Influence Impedance Across The Line From Slide 4 - Note: not a function of time! (only of distance from load) Alternatively - From Lecture 2: 10

11 Example: Z( /4) with Shorted Load λ/4 Z L y x Z(λ/4) z z Calculate reflection coefficient L 0 Calculate generalized reflection coefficient Calculate impedance 11

12 Generalize Relationship Between Z( /4) and Z(0) General formulation At load (z=0) At quarter wavelength away (z = /4) - Impedance is inverted! Shorts turn into opens Capacitors turn into inductors 12

13 Now Look At Z( ) (Impedance Close to Load) Impedance formula ( very small) - A useful approximation: - Recall from Lecture 2: Overall approximation: 13

14 Example: Look At Z( ) With Load Shorted Z L y x Z(Δ) z z Δ 0 Reflection coefficient: Resulting impedance looks inductive! 14

15 Example: Look At Z( ) With Load Open Z L y x Z(Δ) z z Δ 0 Reflection coefficient: Resulting impedance looks capacitive! 15

16 Consider an Ideal LC Tank Circuit Z in L C Calculate input impedance about resonance = 0 negligible 16

17 Transmission Line Version: Z( /4) with Shorted Load λ 0 /4 Z L y x Z(λ 0 /4) z z L As previously calculated 0 Impedance calculation Relate to frequency 17

18 Calculate Z( f) Step 1 λ 0 /4 Z L y x Z(λ 0 /4) z z L Wavelength as a function of f 0 Generalized reflection coefficient 18

19 Calculate Z( f) Step 2 λ 0 /4 Z L y x Z(λ 0 /4) z Impedance calculation z L 0 Recall - Looks like LC tank circuit (but more than one mode)! 19

20 Smith Chart Define normalized impedance Mapping from normalized impedance to is one-to-one - Consider working in coordinate system based on Key relationship between Z n and - Equate real and imaginary parts to get Smith Chart 20

21 Real Impedance in Coordinates (Equate Real Parts) Γ L =j Im{Γ L } Γ L =-1 Γ L =0 Γ L = Re{Γ L } Z n =0.5 Γ L =-j 21

22 Imag. Impedance in Coordinates (Equate Imag. Parts) j1 Im{Γ L } j0.5 Γ L =j j2 j0.2 Z n =j0.5 j5 Γ L =-1 Γ L =0 Γ L =1 0 Re{Γ L } -j0.2 Z n =-j0.5 -j5 -j0.5 Γ L =-j -j2 -j1 22

23 What Happens When We Invert the Impedance? Fundamental formulas Impact of inverting the impedance - Derivation: We can invert complex impedances in plane by simply changing the sign of! How can we best exploit this? 23

24 The Smith Chart as a Calculator for Matching Networks Consider constructing both impedance and admittance curves on Smith chart - Conductance curves derived from resistance curves - Susceptance curves derived from reactance curves For series circuits, work with impedance - Impedances add for series circuits For parallel circuits, work with admittance - Admittances add for parallel circuits 24

25 Resistance and Conductance on the Smith Chart Im{Γ L } Γ L =j Y n =0.5 Z n =0.5 Γ L =-1 Γ L =0 Γ L =1 Y n =2 Z n =2 Re{Γ L } Γ L =-j 25

26 Reactance and Susceptance on the Smith Chart j1 Im{Γ L } j0.5 Γ L =j j2 j0.2 Y n =-j2 Z n =j2 j5 Γ L =-1 Γ L =0 Γ L =1 0 Re{Γ L } -j0.2 Y n =j2 Z n =-j2 -j5 -j0.5 Γ L =-j -j2 -j1 26

27 Overall Smith Chart j1 j0.5 j2 j0.2 j j0.2 j5 j0.5 j2 j1 27

28 Example Match RC Network to 50 Ohms at 2.5 GHz Circuit Matching Network Z in C p =1pF R p =200 Z L Step 1: Calculate Z Ln Step 2: Plot Z Ln on Smith Chart (use admittance, Y Ln ) 28

29 Plot Starting Impedance (Admittance) on Smith Chart j1 j0.5 j2 j0.2 j j0.2 -j5 -j0.5 Y Ln =0.25+j j2 -j1 (Note: Z Ln =0.37-j1.16) 29

30 Develop Matching Game Plan Based on Smith Chart By inspection, we see that the following matching network can bring us to Z in = 50 Ohms (center of Smith chart) Matching Network L m Z in C p =1pF R p =200 C m Z L Use the Smith chart to come up with component values - Inductance L m shifts impedance up along reactance curve - Capacitance C m shifts impedance down along susceptance curve 30

31 Add Reactance of Inductor L m j1 j0.5 j2 Z 2n =0.37+j0.48 j0.2 j normalized inductor reactance -j0.2 = j1.64 -j5 -j0.5 Z Ln =0.37-j1.16 -j1 -j2 31

32 Inductor Value Calculation Using Smith Chart From Smith chart, we found that the desired normalized inductor reactance is Required inductor value is therefore 32

33 Add Susceptance of Capacitor C m (Achieves Match!) j1 j0.5 Z 2n =0.37+j0.48 (note: Y 2n =1.00-j1.31) j2 j0.2 0 normalized capacitor susceptance = j j j5 -j0.2 -j5 -j0.5 Z Ln =0.37-j1.16 -j1 -j2 33

34 Capacitor Value Calculation Using Smith Chart From Smith chart, we found that the desired normalized capacitor susceptance is Required capacitor value is therefore 34

35 Just For Fun Play the matching game at - Allows you to graphically tune several matching networks - Note: game is set up to match source to load impedance rather than match the load to the source impedance Same results, just different viewpoint 35

36 Passives 36

37 Polysilicon Resistors Use unsilicided polysilicon to create resistor A A R poly B B Key parameters - Resistance (usually Ohms per square) - Parasitic capacitance (usually small) Appropriate for high speed amplifiers - Linearity (quite linear compared to other options) - Accuracy (usually can be set within ± 15%) 37

38 MOS Resistors Bias a MOS device in its triode region A R ds W/L B A B High resistance values can be achieved in a small area (MegaOhms within tens of square microns) Resistance is quite nonlinear - Appropriate for small swing circuits 38

39 High Density Capacitors (Biasing, Decoupling) MOS devices offer the highest capacitance per unit area - Limited to a one terminal device - Voltage must be high enough to invert the channel A A C 1 =C ox WL W/L Key parameters - Capacitance value Raw cap value from MOS device is 6.1 ff/ m 2 for 0.24u CMOS - Q (i.e., amount of series resistance) Maximized with minimum L (tradeoff with area efficiency) See pages of Tom Lee s book 39

40 High Q Capacitors (Signal Path) Lateral metal capacitors offer high Q and reasonably large capacitance per unit area - Stack many levels of metal on top of each other (best layers are the top ones), via them at maximum density A A C 1 B - B Accuracy often better than ±10% - Parasitic side cap is symmetric, less than 10% of cap value Example: C T = 1.5 ff/ m 2 for 0.24 m process with 7 metals, L min = W min = 0.24 m, t metal = 0.53 m - see Capacity Limits and Matching Properties of Integrated Capacitors, Aparicio et. al., JSSC, Mar

41 Spiral Inductors Create integrated inductor using spiral shape on top level metals (may also want a patterned ground shield) A A B L m B - Key parameters are Q (< 10), L (1-10 nh), self resonant freq. - Usually implemented in top metal layers to minimize series resistance, coupling to substrate - Design using Mohan et. al, Simple, Accurate Expressions for Planar Spiral Inductances, JSSC, Oct, 1999, pp Verify inductor parameters (L, Q, etc.) using ASITIC 41

42 Bondwire Inductors Used to bond from the package to die - Can be used to advantage Adjoining pins package die From board L bondwire To chip circuits C pin C bonding_pad Key parameters - Inductance ( 1 nh/mm usually achieve 1-5 nh) - Q (much higher than spiral inductors typically > 40) 42

43 Integrated Transformers Utilize magnetic coupling between adjoining wires A B C par1 k C D L 1 L 2 C C par2 D Key parameters - A B L (self inductance for primary and secondary windings) - k (coupling coefficient between primary and secondary) Design ASITIC, other CAD packages 43

44 High Speed Transformer Example A T-Coil Network A T-coil consists of a center-tapped inductor with mutual coupling between each inductor half B L 2 C B X k L 1 X A A B Used for bandwidth enhancement - See S. Galal, B. Ravazi, 10 Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18u CMOS, ISSCC 2003, pp and Broadband ESD Protection, pp

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

Characteristics of Passive IC Devices

Characteristics of Passive IC Devices 008/Oct 8 esistors Characteristics of Passive IC Devices Poly esistance Diffusion esistance Well esistance Parasitic esistance Capacitors Poly Capacitors MOS Capacitors MIM Capacitors Parasitic Capacitors

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

How to measure complex impedance at high frequencies where phase measurement is unreliable.

How to measure complex impedance at high frequencies where phase measurement is unreliable. Objectives In this course you will learn the following Various applications of transmission lines. How to measure complex impedance at high frequencies where phase measurement is unreliable. How and why

More information

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen Lecture 040 Integrated Circuit Technology - II (5/11/03) Page 040-1 LECTURE 040 INTEGRATED CIRCUIT TECHNOLOGY - II (Reference [7,8]) Objective The objective of this presentation is: 1.) Illustrate and

More information

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance as a function of reflection coefficient. Many problems can be easily visualized with the Smith Chart The Smith chart

More information

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices EECS240 Spring 2008 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS echnology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 oday s Lecture

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017 Berkeley The Smith Chart Prof. Ali M. Niknejad U.C. Berkeley Copyright c 17 by Ali M. Niknejad September 14, 17 1 / 29 The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance

More information

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers 6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers Michael Perrott Massachusetts Institute of Technology March 8, 2005 Copyright 2005 by Michael H. Perrott Notation for Mean,

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF Annexure-I Impedance matching and Smith chart The output impedance of the RF generator is 50 ohms. The impedance matching network acts as a buffer in matching the impedance of the plasma reactor to that

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 18.09.2014 L Type Matching Network Examples Nodal Quality Factor T- and Pi- Matching Networks Microstrip Matching Networks Series- and Shunt-stub Matching L Type Matching Network (contd.)

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

Microwave Circuits Design

Microwave Circuits Design The Smith Chart: The Smith chart is a graphical aide used to simplify the solution of Tx-line problems More importantly, the Smith chart allows us to visualize the periodic nature of the line impedance

More information

Advantages of Using CMOS

Advantages of Using CMOS Advantages of Using CMOS Compact (shared diffusion regions) Very low static power dissipation High noise margin (nearly ideal inverter voltage transfer characteristic) Very well modeled and characterized

More information

Class E Design Formulas V DD

Class E Design Formulas V DD Class E Design Formulas V DD RFC C L+X/ω V s (θ) I s (θ) Cd R useful functions and identities Units Constants Table of Contents I. Introduction II. Process Parameters III. Inputs IV. Standard Class E Design

More information

ECE 391 supplemental notes - #11. Adding a Lumped Series Element

ECE 391 supplemental notes - #11. Adding a Lumped Series Element ECE 391 supplemental notes - #11 Adding a umped Series Element Consider the following T-line circuit: Z R,1! Z,2! Z z in,1 = r in,1 + jx in,1 Z in,1 = z in,1 Z,1 z = Z Z,2 zin,2 = r in,2 + jx in,2 z,1

More information

ECE 604, Lecture 13. October 16, 2018

ECE 604, Lecture 13. October 16, 2018 ECE 604, Lecture 13 October 16, 2018 1 Introduction In this lecture, we will cover the following topics: Terminated Transmission Line Smith Chart Voltage Standing Wave Ratio (VSWR) Additional Reading:

More information

Impedance Matching. Generally, Z L = R L + jx L, X L 0. You need to turn two knobs to achieve match. Example z L = 0.5 j

Impedance Matching. Generally, Z L = R L + jx L, X L 0. You need to turn two knobs to achieve match. Example z L = 0.5 j Impedance Matching Generally, Z L = R L + jx L, X L 0. You need to turn two knobs to achieve match. Example z L = 0.5 j This time, we do not want to cut the line to insert a matching network. Instead,

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 1. 8 February 2016, 19:00 20:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 1. 8 February 2016, 19:00 20:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE57HS ELECTROMAGNETIC FIELDS TERM TEST 8 February 6, 9:00 :00

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

ANTENNAS and MICROWAVES ENGINEERING (650427)

ANTENNAS and MICROWAVES ENGINEERING (650427) Philadelphia University Faculty of Engineering Communication and Electronics Engineering ANTENNAS and MICROWAVES ENGINEERING (65427) Part 2 Dr. Omar R Daoud 1 General Considerations It is a two-port network

More information

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS 2 -> ESD PROTECTION CIRCUITS (INPUT PADS) -> ON-CHIP CLOCK GENERATION & DISTRIBUTION -> OUTPUT PADS -> ON-CHIP NOISE DUE TO PARASITIC INDUCTANCE -> SUPER BUFFER

More information

Impedance Matching and Tuning

Impedance Matching and Tuning C h a p t e r F i v e Impedance Matching and Tuning This chapter marks a turning point, in that we now begin to apply the theory and techniques of previous chapters to practical problems in microwave engineering.

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Lowpass L Matching Network Designer

Lowpass L Matching Network Designer Lowpass L Matching Network Designer V S L V L I S j*x S C j*x L Table of Contents I. General Impedance Matching II. Impedance Transformation for Power Amplifiers III. Inputs IV. Calculations V. Outputs

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 2. i 2 + i 8 3. i 3 + i 20 4. i 100 5. i 77 esolutions Manual - Powered by Cognero Page 1 6. i 4 + i 12 7. i 5 + i 9 8. i 18 Simplify. 9. (3 + 2i) + ( 4 + 6i) 10. (7 4i) + (2 3i) 11.

More information

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 Question 1 (a) List three sources of heat in soldering (b) state the functions of flux in soldering (c) briefly describe with aid of diagram

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 1 2. i 2 + i 8 0 3. i 3 + i 20 1 i esolutions Manual - Powered by Cognero Page 1 4. i 100 1 5. i 77 i 6. i 4 + i 12 2 7. i 5 + i 9 2i esolutions Manual - Powered by Cognero Page 2 8.

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the 3.1 Smith Chart Construction: Start with polar representation of. L ; in on lossless lines related by simple phase change ) Idea: polar plot going from L to in involves simple rotation. in jj 1 ) circle

More information

Transmission Lines in the Frequency Domain

Transmission Lines in the Frequency Domain Berkeley Transmission Lines in the Frequency Domain Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad August 30, 2017 1 / 38 Why Sinusoidal Steady-State? 2 / 38 Time Harmonic Steady-State

More information

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

Module 2 : Transmission Lines. Lecture 10 : Transmisssion Line Calculations Using Smith Chart. Objectives. In this course you will learn the following

Module 2 : Transmission Lines. Lecture 10 : Transmisssion Line Calculations Using Smith Chart. Objectives. In this course you will learn the following Objectives In this course you will learn the following What is a constant VSWR circle on the - plane? Properties of constant VSWR circles. Calculations of load reflection coefficient. Calculation of reflection

More information

Solutions to Problems in Chapter 6

Solutions to Problems in Chapter 6 Appendix F Solutions to Problems in Chapter 6 F.1 Problem 6.1 Short-circuited transmission lines Section 6.2.1 (book page 193) describes the method to determine the overall length of the transmission line

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L5: Fabrication and Layout -2 (12.8.2013) B. Mazhari Dept. of EE, IIT Kanpur 44 Passive Components: Resistor Besides MOS transistors, sometimes one requires to implement passive

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

EMC Considerations for DC Power Design

EMC Considerations for DC Power Design EMC Considerations for DC Power Design Tzong-Lin Wu, Ph.D. Department of Electrical Engineering National Sun Yat-sen University Power Bus Noise below 5MHz 1 Power Bus Noise below 5MHz (Solution) Add Bulk

More information

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2 Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry

More information

Lecture 13 Date:

Lecture 13 Date: ecture 3 Date: 6.09.204 The Signal Flow Graph (Contd.) Impedance Matching and Tuning Tpe Matching Network Example Signal Flow Graph (contd.) Splitting Rule Now consider the three equations SFG a a b 2

More information

Capacitor. Capacitor (Cont d)

Capacitor. Capacitor (Cont d) 1 2 1 Capacitor Capacitor is a passive two-terminal component storing the energy in an electric field charged by the voltage across the dielectric. Fixed Polarized Variable Capacitance is the ratio of

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3. Technology

Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3. Technology Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3 Technology January 019 Texas A&M University 1 Spring, 019 Well-Diffusion Resistor Example shows two long resistors for K range Alternatively, serpentine

More information

MODULE-4 RESONANCE CIRCUITS

MODULE-4 RESONANCE CIRCUITS Introduction: MODULE-4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

EE Lecture 7. Finding gamma. Alternate form. I i. Transmission line. Z g I L Z L. V i. V g - Z in Z. z = -l z = 0

EE Lecture 7. Finding gamma. Alternate form. I i. Transmission line. Z g I L Z L. V i. V g - Z in Z. z = -l z = 0 Impedance on lossless lines EE - Lecture 7 Impedance on lossless lines Reflection coefficient Impedance equation Shorted line example Assigned reading: Sec.. of Ulaby For lossless lines, γ = jω L C = jβ;

More information

y(d) = j

y(d) = j Problem 2.66 A 0-Ω transmission line is to be matched to a computer terminal with Z L = ( j25) Ω by inserting an appropriate reactance in parallel with the line. If f = 800 MHz and ε r = 4, determine the

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Introduction to RF Design RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Objectives Understand why RF design is different from lowfrequency design. Develop RF models of passive components.

More information

6-1 Chapter 6 Transmission Lines

6-1 Chapter 6 Transmission Lines 6-1 Chapter 6 Transmission ines ECE 3317 Dr. Stuart A. ong 6-2 General Definitions p.133 6-3 Voltage V( z) = α E ds ( C z) 1 C t t ( a) Current I( z) = α H ds ( C0 closed) 2 C 0 ( b) http://www.cartoonstock.com

More information

EE382M-14 CMOS Analog Integrated Circuit Design

EE382M-14 CMOS Analog Integrated Circuit Design EE382M-14 CMOS Analog Integrated Circuit Design Lecture 3, MOS Capacitances, Passive Components, and Layout of Analog Integrated Circuits MOS Capacitances Type of MOS transistor capacitors Depletion capacitance

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn POWER SUPPY INDUED JITTER MODEING OF AN ON- HIP OSIATOR Shahriar Rokhsaz, Jinghui u, Brian Brunn Rockethips Inc. (A Xilinx, Inc. Division) ABSTRAT This paper concentrates on developing a closed-form small

More information

Lecture 020 Review of CMOS Technology (09/01/03) Page 020-1

Lecture 020 Review of CMOS Technology (09/01/03) Page 020-1 Lecture 020 Review of CMOS Technology (09/01/03) Page 020-1 LECTURE 020 REVIEW OF CMOS TECHNOLOGY INTRODUCTION Objective Provide sufficient background to understand the limits and capabilities of CMOS

More information

Interconnect Energy Dissipation in High-Speed ULSI Circuits

Interconnect Energy Dissipation in High-Speed ULSI Circuits Interconnect Energy Dissipation in High-Speed ULSI Circuits Payam Heydari Soroush Abbaspour and Massoud Pedram Department of Electrical Engineering and Computer Science Department of Electrical Engineering-Systems

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Case Study: Parallel Coupled- Line Combline Filter

Case Study: Parallel Coupled- Line Combline Filter MICROWAVE AND RF DESIGN MICROWAVE AND RF DESIGN Case Study: Parallel Coupled- Line Combline Filter Presented by Michael Steer Reading: 6. 6.4 Index: CS_PCL_Filter Based on material in Microwave and RF

More information

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Wire July 30, 2002 1 The Wire transmitters receivers schematics physical 2 Interconnect Impact on

More information

SPIRAL and RF-PASS Three Dimensional Design and Analysis Tools for RF Integrated Circuits

SPIRAL and RF-PASS Three Dimensional Design and Analysis Tools for RF Integrated Circuits SPIRAL and RF-PASS Three Dimensional Design and Analysis Tools for RF Integrated Circuits By Ersed Akcasu, Haris Basit, Kerem Akcasu, Tufan Colak and Ibrahim Akcay OEA International, Inc. 155 East Main

More information

An example of answers for the final report of Electronics"

An example of answers for the final report of Electronics An example of answers for the final report of Electronics" Shingo Katsumoto February 7, 07 Here is an example of answers. There are many other possibilities. DA conversion circuits. Resistance-ladder type

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

Waves on Lines. Contents. ! Transmission Lines! The Smith Chart! Vector Network Analyser (VNA) ! Measurements

Waves on Lines. Contents. ! Transmission Lines! The Smith Chart! Vector Network Analyser (VNA) ! Measurements Waves on Lines If the wavelength to be considered is significantly greater compared to the size of the circuit the voltage will be independent of the location. amplitude d! distance but this is not true

More information

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 14 Oscillators Let us consider sinusoidal oscillators.

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Lecture 9. The Smith Chart and Basic Impedance-Matching Concepts

Lecture 9. The Smith Chart and Basic Impedance-Matching Concepts ecture 9 The Smith Chart and Basic Impedance-Matching Concepts The Smith Chart: Γ plot in the Complex Plane Smith s chart is a graphical representation in the complex Γ plane of the input impedance, the

More information

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution - Fall 2002 Lecture 25 Interconnect Effects I/O, Power Distribution Announcements Homework 9 due next Tuesday Hardware lab this week Project phase 2 due in two weeks 1 Today s Lecture Impact of interconnects»

More information

Circuit Topologies & Analysis Techniques in HF ICs

Circuit Topologies & Analysis Techniques in HF ICs Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

AC Source and RLC Circuits

AC Source and RLC Circuits X X L C = 2π fl = 1/2π fc 2 AC Source and RLC Circuits ( ) 2 Inductive reactance Capacitive reactance Z = R + X X Total impedance L C εmax Imax = Z XL XC tanφ = R Maximum current Phase angle PHY2054: Chapter

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Lecture 12 Date:

Lecture 12 Date: Lecture 12 Date: 09.02.2017 Microstrip Matching Networks Series- and Shunt-stub Matching Quarter Wave Impedance Transformer Microstrip Line Matching Networks In the lower RF region, its often a standard

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

More information

PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

More information

Design Equations for Spiral and Scalable Cross Inductors on 0.35 μm CMOS Technology

Design Equations for Spiral and Scalable Cross Inductors on 0.35 μm CMOS Technology DOI: http://dx.doi.org/10.1590/2179-10742018v17i31215 403 Design Equations for Spiral and Scalable Cross Inductors on 0.35 μm CMOS Technology José Fontebasso Neto 1, Luiz Carlos Moreira 1, Fatima Salete

More information

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

More information

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). . Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

LAYOUT TECHNIQUES. Dr. Ivan Grech

LAYOUT TECHNIQUES. Dr. Ivan Grech LAYOUT TECHNIQUES OUTLINE Transistor Layout Resistor Layout Capacitor Layout Floor planning Mixed A/D Layout Automatic Analog Layout Layout Techniques Main Layers in a typical Double-Poly, Double-Metal

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

AC Circuits and Electromagnetic Waves

AC Circuits and Electromagnetic Waves AC Circuits and Electromagnetic Waves Physics 102 Lecture 5 7 March 2002 MIDTERM Wednesday, March 13, 7:30-9:00 pm, this room Material: through next week AC circuits Next week: no lecture, no labs, no

More information

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

Power Distribution System Design Methodology and Capacitor Selection for Modern CMOS Technology

Power Distribution System Design Methodology and Capacitor Selection for Modern CMOS Technology Power Distribution System Design Methodology and Capacitor Selection for Modern CMOS Technology Abstract Larry Smith, Raymond Anderson, Doug Forehand, Tom Pelc, Tanmoy Roy Sun Microsystems, Inc. MS MPK15-103

More information