Electronic Circuits Summary


 Dwayne Martin
 1 years ago
 Views:
Transcription
1 Electronic Circuits Summary Andreas Biri, DITET Constants ε 0 = F m m 0 = kg k = J K = ev/k kt q = V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent Circuit BJT Consider only small oscillations around operation point Linearize as approximation, V CC = 0 = V EE as const. i C = β v E = d I C β + R E d V BE v out ( v in v E ) = V BE v E R E R L + R E v in = d I C = I C, g d V BE V π = d I B = T d V BE β Small Signal Equivalent Circuit MOSFET g 0 = d I D d V DS = I D = d I D d V GS K W L I D λ λ I + λ V D, r 0 = DS g 0 λ I D ev = J q = A s. Transistor Characteristics Resistor: V R = R I R g 0 = d I C d V CE = r π = g π = β, I C V A + V CE I C V A r 0 = g 0 = V A + V CE I C V A I C. SingleTransistor Amplifiers Capacitor: I C = C d dt V C Inductor: V L = L d dt I L Bipolar Junction Transistor ( BJT ) V BE I C = I S e V T ( + V CE ), V V T = kt A q 6 mv I B = I C β, I E = ( + β) I β, V A Early voltage Biasing of a BJT ( Setting the operationg point ) Voltage divider R B, R B sets the bias voltage Transistor in active region : V BE 0.7 V MOSFET Impedances: Gains: Z in = v in i in, Z out = v out i out ( v S = 0 ) A V = v out v S, A I = i out i s ( R L = 0 ) I D = K W L ( V GS V t ) ( + λ V DS ), V DS > V GS V t Millers theorem K : Intrinsic transconduct. coeff. V t : Threshold voltage W / L : Gate width / Gate length λ : Characteristic length Z in = Z + A V, Z out = Z + A V
2 CommonEmitter / Source Amplifier R in = v in i in = r π R out = v out = r i 0 L v in =0 CommonBase / Gate Amplifier CommonCollector / Drain Amplifier Also known as emitter / source follower Rout i L = r 0 r 0 + R L v in A V = v out v S r π r π + R S R L, v out v in Inverting Amplifier 80 phase shift A I = i out = R S β, i S R v out =0 S + r π = i L R L v in R L i out = g i m r π = β in v out =0 MOSFET: instead of BJT, no current into the gate R in = v in i in R out = v out i out R S r π ((r π R S ) + ) r 0 β r 0 A V = v out v S R L + R S non inverting amp. A I = i out = for R i in S r π v out =0 + g R S r m π MOSFET: R S = 0 voltage source ; R S = current source Usually: R L r 0 R L r 0 R L R in = v in = r i π + ( + β) R L, R out = in + r π A V = v out v in + R L, A I = + β MOSFET: no current flowing into the gate ( A I = ) v out R L v in R in = R out = No current flow into the gate: R out, v in = v S R out = r 0, A V R L A V = v out R L, A v S + R I = i out = S i S R in = v in i in, R out ( + R S ) r 0 A V, + R L i out = v out
3 Comparison of the three basic amplifiers MultiStage Amplifier 4. Differential Amplifiers Transmitting information with two complementary signals Information is contained in the difference, same DC value Small signal model: all constant voltage supplies become ground After voltage buffer: lower output resistance (better Vsource) After current buffer: larger output resistance (better Csource) Impedance Matching P L is maximized when R L = R S 3. Frequency Response of Amplifiers Change of charge vs. voltage across pnjunctions between BJTs can be represented by a parasitic capacitance Stage : Stage : C C large, shorts, C gd often negligible Differential amplifier: In order to filter out DC component before the amplification, we use a fixed tail current I E, which also enables DC coupling of stages (current splitted) C π capacitance between B and E, C μ capacitance between B and C, C gs C gd v out = v Z R + sc L R v, Z A V (s) = v out(s) v (s) = R + s C L R Cutoff frequencies: defined by poles R + sc L R A V (s) = v out(s) v in (s) = R R ( + s R C gs )( + s R C L ) BandwidthBroadening Additional shunt/feedback resistor R f up to doubles bandwidth! ω = p = R C L ω = p = R C gs Time Domain representation: v out (t) = A e p t + B e p t + C V E ( emitternode potential) remains constant v E = 0 Symmetry between left and right branch split circuit into two independent parts and analyze separately (once) Differential amplification: A vd = v od v id = R C Commonmode amplification: A vcm = v 0 = v ocm = R C v i v icm R E 3
4 Common Mode Rejection Ratio Indicates how strong a common mode signal is attenuated compared to a differential signal G = A vd A vcm = R C R C /R E = R E CMRR = G db = 0 log 0 G GBP = A 0 ω C Operational amplifiers Noninverting amplifier Integrator 5. Instrumentation Amplifier Precise amplification of weak, distorted sensor signals High input impedance, internal feedback loop Basic Instrumentation Amplifier Amplifies voltage difference with a precise gain Differential gain must be equal for both input branches Ideal: Z in, Z out 0, A vd, CMMR Nonideal Small Signal Equivalent Differentiator Voltage Comparator Voltage follower ( Buffer ) V out = sign(v in ) V CC V 0 = R R + R 4 / + R /R V i+ R 4 V i Set R =, R = R 4 to equally load both input branches: V 0 = G V i+ G V i, G = R R = R 4 Buffered Instrumental Amplifier Obtain ideally high input impedance by input buffering Inverting amplifier V 0 = V icm ( R ( + R 4 ) (R + R ) R 4 ) + V id (R ( + R 4 ) (R + R ) + R 4 ) CMMR = A d = V 0/V id = ( + R 4 )R + (R + R )R 4 A cm V 0 /V icm (R R 4 R ) 4
5 Input stage gain Differential & common mode gain of input stage: A B = V Bd V id = V B+ V B V i+ V i = + R 5 + R 6 R 7 6. Voltage Regulators, Logarithmic & AntiLogarithmic Amplifiers Linear voltage regulators Small Signal Equivalent: Z out = v out = s + ωp 0 i o A 0 ( + s ) ( + s C L ) ωp 0 A 0 Logarithmic & AntiLogarithmic Amplifiers Nonlinear circuit whose output voltage is proportional to the logarithm / exponential of the input voltage A cm,b = V B+ + V B V i+ + V i = no current through R 5, R 6, R 7 Differential & common mode gain in total: A d = V 0 V id = A B ( R ( + R 4 ) (R + R ) + R 4 ) Logarithmic Amplifier: Rely on logarithmic relationship of I C & V BE CMMR = A d R =, R = R 4 A d = R R A B A cm = A cm,b ( R ( + R 4 ) (R + R ) R 4 ) A cm = A B A d A cm increased by factor A B I in = V in = I R C = I S e V out V T, V out = V T ln ( I in ) = V I T ln ( V in ) S R I S AntiLogarithmic Amplifier Voltage offset: Offset voltage in combination with a small input signal is highly undesired. The output signal then reaches the saturation level even for small values of V i and is therefore distorted. If this is not appropriate, chopper amplifiers can be used. V out = ( + R F R F ) V ref Choose R F, R F R L I L I E / I C V BE = V in, I C = I S e V in V T V out = I C R = I S R e V in V T 5
6 7. Active RC Filters First order active filters Filters and amplifies signal Resonance frequency: ω 0 = / L C Filter is a frequencyselective circuit that passes a specified band of frequencies and blocks frequencies outside of it. Quality factor: Q 0 = L R C Passive Filters: based on passive elements such as R / L / C Active Filters: based on opamps in addition to R / L / C Energy vs. freq. The higher Q, the narrower and sharper the peak. Comparison of first order filters Lowpass filter Cutoff frequency Poles define cutoff: ω n = p n, First order passive filters T(jω c ) = max ( T(jω) ) BW 3dB = ω 0 Q0 Second order passive filters nd order passive filters can be synthesized from st order T(s) = Highpass filter Bandpass filter LC s + R L s + = LC T(s) = s ω 0 s + ω 0 Q 0 s + ω 0 ω 0 s + ω 0 Q 0 s + ω 0 T(s) = R C s + 3 RC s +, ω 0 = RC, Q 0 = 3 R C Denominator: D(s) = s + ω 0 Q o s + ω 0 T(s) = s R L s + R L s + LC Poles: p, = ω 0 Q 0 ± ω 0 4 Q 0 6
7 SallenKey amplifier Allow sharp gains without using inductors (expensive) Lowpass filter Bandpass filter 8. Switched capacitor filters Motivation: some systems require an active RC lowpass filter with very low f cutoff We need a large resistor in a highly integrated chip, whereby it is also inaccurate. Concept of switched capacitor devices Highpass filter TowThomas Biquad filter Less sensitive to tolerance difference; combine SallenKeys Transfer of charge Q from potential V to potential V at a fixed rate f c = T C. Transferred charge per T C : Q = C ( V V ) Average current: Equivalent resistor: I,avg = Q T C = C ( V V ) T C R eq = T C C = f c C 7
8 Inverting Integrator using SC Noninverting Integrator using SC Replace all reistors by switched capacitors Phase : Φ on, charge accumulates on C and C Phase : Φ on, C is discharged C V out [nt C ] = C V out [(n )T C ] C V in [n T C ] Same circuit as before, only change of switching schedule Charge on C is inverted compared to before Phase : C is charged to V in Design equations: C R4 C R3 = k, C R C = C R3 C = ω 0 T C, C R3 C R = Q Phase : Charge is transferred to C C V out [n T C ] = C V out [ (n )T C ] + C V in [n T C ] C V in (z) = C ( z ) V Out (z) Ztransform extended V out (z) V in (z) = C C z Switched capacitor TowThomas biquad seems continuous for small enough T C V out [n T C ] = C n T C V T C C in (t) dt Ratio of capacitors can be realized more accurate than absolute values of R and C. Ztransform 0 8
9 9. Appendix Transimpedance amplifiers Sensing an input current & converting it to output voltage Frequency Response of Transimpedance Amplifiers Step Response of SecondOrder Systems r m = dv 0 di in, Z in 0, Z out 0 9
10 Switched Capacitors Examples 0
OPERATIONAL AMPLIFIER APPLICATIONS
OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Noninverting Configuration (Chapter 2.3) 2.4 Difference
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationElectronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory
Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, AntiLogarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationWhereas the diode was a 1junction device, the transistor contains two junctions. This leads to two possibilities:
Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: ntype (favor e), ptype (favor holes) for conduction Whereas the diode was a junction
More informationDESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OPAMP It consists of two stages: First
More informationECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More information3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti
Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More informationEE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationAdvanced Current Mirrors and Opamps
Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 WideSwing Current Mirrors I bias I V I in out out = I in V W L bias 
More informationLecture 6, ATIK. Switchedcapacitor circuits 2 S/H, Some nonideal effects Continuoustime filters
Lecture 6, ATIK Switchedcapacitor circuits 2 S/H, Some nonideal effects Continuoustime filters What did we do last time? Switched capacitor circuits The basics Chargeredistribution analysis Nonidealties
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationSwitching circuits: basics and switching speed
ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationI. Frequency Response of Voltage Amplifiers
I. Frequency Response of Voltage Amplifiers A. CommonEmitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o >, r oc >, R L > Find V BIAS such that I C
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationMetalOxideSemiconductor Field Effect Transistor (MOSFET)
MetalOxideSemiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n substrate  SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate
More informationElectronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Threeterminal device whose voltagecurrent relationship is controlled by a third voltage
More informationStudio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232242 Twostage opamp Analysis Strategy Recognize
More informationCE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202  Manuel Toledo August 20, 2012 INEL 4202  Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationChapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cutoff frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance
More informationPHYS225 Lecture 9. Electronic Circuits
PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current
More informationHomework Assignment 11
Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuoustime active filters. (3 points) Continuous time filters use resistors
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationOperational Amplifier (OpAmp) Operational Amplifiers. OPAmp: Components. Internal Design of LM741
(OpAmp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationFilters and Tuned Amplifiers
Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
More informationElectronic Devices and Circuits Lecture 18  Single Transistor Amplifier Stages  Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More informationLecture 23: Negative Resistance Osc, Differential Osc, and VCOs
EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationThe BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
More informationCapacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationEE 508 Lecture 24. Sensitivity Functions  Predistortion and Calibration
EE 508 Lecture 24 Sensitivity Functions  Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 secondorder lowpass filters (all can realize same T(s) within a gain factor)
More informationFrequency Response Prof. Ali M. Niknejad Prof. Rikky Muller
EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:
More informationCommon Drain Stage (Source Follower) Claudio Talarico, Gonzaga University
Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i  v o V DD v bs  v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs  C
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationSWITCHED CAPACITOR AMPLIFIERS
SWITCHED CAPACITOR AMPLIFIERS AO 0V 4. AO 0V 4.2 i Q AO 0V 4.3 Q AO 0V 4.4 Q i AO 0V 4.5 AO 0V 4.6 i Q AO 0V 4.7 Q AO 0V 4.8 i Q AO 0V 4.9 Simple amplifier First approach: A 0 = infinite. C : V C = V s
More informationELEN 610 Data Converters
Spring 04 S. Hoyos  EEN60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos  EEN60 Electronic Noise Signal to Noise ratio SNR Signal Power
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More information55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationECE 546 Lecture 11 MOS Amplifiers
ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase
More informationEE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR
EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3
More informationSystem on a Chip. Prof. Dr. Michael Kraft
System on a Chip Prof. Dr. Michael Kraft Lecture 3: Sample and Hold Circuits Switched Capacitor Circuits Circuits and Systems Sampling Signal Processing Sample and Hold Analogue Circuits Switched Capacitor
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationCHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis  Bode plot low frequency response BJT amplifier Miller
More informationESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model
Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationEECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology
EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor
More informationCARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
More information1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012
/3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS V th " VGS vi  I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F
More informationCHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS
CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators
More informationEE C245 ME C218 Introduction to MEMS Design
EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t
More informationRefinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for nonideal transistor behavior Incremental output port resistance Incremental changes
More informationIntroduction to CMOS RF Integrated Circuits Design
V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall
More informationDesign of Analog Integrated Circuits
Design of Analog Integrated Circuits Chapter 11: Introduction to Switched Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationQuick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V Odm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V Odm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V Odm is the differential output offset
More informationChapter 2 SwitchedCapacitor Circuits
Chapter 2 SwitchedCapacitor Circuits Abstract his chapter introduces SC circuits. A brief description is given for the main building blocks of a SC filter (operational amplifiers, switches, capacitors,
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More informationMMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90
Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C
More informationSOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
More informationMaster Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor
Master Degree in Electronic Engineering TOPUIC TorinoChicago Double Degree Project Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y. 20132014 Switched Capacitor Working Principles
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationChapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model commonemitter fixedbias voltagedivider bias emitterbias & emitterfollower commonbase configuration Transistor
More informationEECS 105: FALL 06 FINAL
University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 23:30 Wednesday December 13, 12:303:30pm EECS 105: FALL 06 FINAL NAME Last
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)
More informationOPERATIONAL AMPLIFIER ª Differentialinput, SingleEnded (or Differential) output, DCcoupled, HighGain amplifier
à OPERATIONAL AMPLIFIERS à OPERATIONAL AMPLIFIERS (Introduction and Properties) Phase relationships: Noninverting input to output is 0 Inverting input to output is 180 OPERATIONAL AMPLIFIER ª Differentialinput,
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationLecture 11: MOS Transistor
Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Crosssection and layout
More informationENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani
ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Opamp Circuits 2. Differential Amplifiers 3. Comparator Circuits
More informationCHAPTER 7  CD COMPANION
Chapter 7  CD companion 1 CHAPTER 7  CD COMPANION CD7.2 Biasing of SingleStage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and fieldeffect
More informationVidyalankar S.E. Sem. III [EXTC] Analog Electronics  I Prelim Question Paper Solution
. (a) S.E. Sem. [EXTC] Analog Electronics  Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority
More informationFEEDBACK AND STABILITY
FEEDBCK ND STBILITY THE NEGTIVEFEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x
More information