EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR


 Hester Simpson
 2 years ago
 Views:
Transcription
1 EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR
2 Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ=
3 And the number is? ?
4 Quiz 3 (solution) Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ= I G = V V GS T W V = < L 2 W 2 μc ( V V ) ( + λv ) V V V V V 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T OX GS T DS GS T DS GS T Cutoff Triode Saturation Guess Saturation: W I = μc V V 2L ( ) 2 D OX GS T V V V > V V GS T DS GS T
5 Quiz 3 (solution) Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ= Guess Saturation: W I = μc ( V V ) 2 D OX GS T 2L V V V > V V GS T DS GS T u I = 2 D 2 2u I D ( ) 4 2 = 25. ma 2V V 7V > 2V V
6 Review from Last Time: nchannel MOSFET Operation and Model V DS V GS I D V BS I B I G (V BS small) Saturation region of operation Inversion layer disappears near drain Saturation first occurs when V DS =V GS V T I D =? I G = I B =
7 Review from Last Time: Transistor Size Comparison with 24AWG Copper Cable (Drawn to scale) State of Art transistor dimensions about 2 times smaller (lateral) than μ fiber The gates of about 4 transistors can be placed on the crosssection of this fiber (maybe only 4 transistors)
8 Review from Last Time: MOS Transistors I= G Standard squarelaw model V <V GS T μ C W V L 2 2L n OX DS I= V V V V V V V V D GS T DS GS T DS GS T μ C W 2 n OX ( V ) ( ) GS V T +λv DS V GS V T V DS > V GS V T μ C n OX λ. V T W/L V 4 A V.5V to 3V varies by design 2
9 Review from Last Time: MOS Transistors pchannel MOSFET I= G Standard squarelaw model V <V GS T μ C W V L 2 2L p OX DS I= V V V V V V V V D GS T DS GS T DS GS T μ C W 2 p OX ( V ) ( ) GS V T +λv DS V GS V T V DS < V GS V T V T < I D V DS
10 Review from Last Time: MOS Transistor Models simplifications I= G I= V <V D GS T V = V V DS GS T Equivalent Circuit Models D D D S S G GS T GS T S
11 Review from Last Time: MOS Transistor Models simplifications V DS I= G I= V > V D GS T V = V V DS GS T I D Equivalent Circuit Models
12 Review from Last Time: MOS Transistor Models simplifications I= G V <V GS T I= D V DS V V GS T RFET R FET L V V μc W GS T OX Better Switchlevel dc model good enough for predicting basic operation of many digital circuits and can be used to predict speed performance if parasitic capacitances are added
13 Review from Last Time: MOS Transistor Models Voltage Variable Resistor (VVR) operation D V CONT FET S R FET L V V μc W GS T OX Analog application of MOSFET in triode region
14 Review from Last Time: Voltage Variable Resistor R 2 A =+ V R R2 A=+ V R Applications include Automatic Gain Control (AGC) R FET FET L V V μc W GS T OX
15 MOS Transistor Models simplifications I D V GS6 V GS5 V GS4 V GS3 V GS2 I= G μc W 2L 2 ( ) ( ) OX I= V V +λv D GS T DS Can often assume λ= Saturation V GS V DS Saturation Region Model used for many analog applications
16 MOS Transistor Models simplifications I= G μc W 2 ( ) 2L Saturation OX I= V V D GS T With λ= Saturation Region Model good enough for many analog applications
17 MOS Transistor Models simplifications μc W OX V GS V T +λv DS 2L 2 ( ) ( ) Saturation Region Model good enough for many analog applications
18 MOS Transistor Models (Summary)
19 MOS Transistor Models (Summary) μc W OX V V +λv 2L ( 2 ) ( ) GS T DS D V CONT FET S
20 MOS Transistor Applications (Digital Circuits) Assume ~ V H = V DD > V T Assume ~ V L = V < V T MOSFET Model I= G I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5
21 MOS Transistor Applications (Digital Circuits) R V DD Assume ~ V H = V DD > V T Assume ~ V L = V < V T X M I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5 If ~ X= V DD, V DS = V so = V ~ If ~ X= V, I D = A so =V DD I D R = V DD ~ So this circuit performs as a Boolean inverter Assume ~ V L < V T Assume ~ V H > V T X Truth Table
22 MOS Transistor Applications (Digital Circuits) V DD R Assume ~ V H = V DD > V T Assume ~ V L = V < V T A B 2 MOSFET Model I= G I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5
23 MOS Transistor Applications (Digital Circuits) V DD R Assume ~ V H = V DD > V T Assume ~ V L = V < V T A B 2 I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5 If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so = V ~ If ~ A= V DD, ~ B= V V, DS = V (and I D2 =A) so = V ~ If ~ A= V, ~ B= V DD, V DS2 = V (and I D =A) so = V ~ If ~ A= V, ~ B= V, I D2 = A and I D =A so I R =A, thus = V DD = I R R=V DD ~
24 A B MOS Transistor Applications (Digital Circuits) R V DD 2 A B Truth Table If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so = V ~ If ~ A= V DD, ~ B= V, V DS = V (and I D2 =A) so = V ~ If ~ A= V, ~ B= V DD, V DS2 = V (and I D =A) so = V ~ If ~ A= V, ~ B= V, I D2 = A and I D =A so I R =A, thus = V DD = I R R=V DD ~ 2input NOR Gate
25 MOS Transistor Applications (Digital Circuits) V DD R Assume ~ V H = V DD > V T Assume ~ V L = V < V T A M B M 2 I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5 If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so =V ~ If ~ A= V DD, If ~ A= V, If ~ A= V, ~ B= V V, DS = V and I D2 =A so I R =A thus =V DD I R R= V DD ~ ~ B= V V DD, DS2 = V and I D =A so I R =A thus =V DD I R R= V DD ~ ~ B= V, I D = A and I D2 =A so I R =A thus =V DD I R R= V DD ~
26 V DD R A M B M 2 MOS Transistor Applications (Digital Circuits) A B Truth Table If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so =V ~ If ~ A= V DD, If ~ A= V, If ~ A= V, ~ B= V V, DS = V and I D2 =A so I R =A thus =V DD I R R= V DD ~ ~ B= V V DD, DS2 = V and I D =A so I R =A thus =V DD I R R= V DD ~ ~ B= V I, D = A and I D2 =A so I R =A thus =V DD I R R= V DD ~ 2input NAND Gate
27 MOS Transistor Applications (Digital Circuits) V DD V DD R R A M A B 2 B M 2 A B A B Can be extended to arbitrary number of inputs But the resistor is not practically available in most processes and static power dissipation is too high
28 MOS Transistor Applications (Digital Circuits) DD X 2 Assume ~ V H = V DD Assume ~ V L = V MOSFET Models
29 MOS Transistor Applications (Digital Circuits) DD 2 Assume ~ V H = V DD X Assume ~ V L = V MOSFET Models Assume V T ~V DD /5 nchannel device Assume V T2 ~  V DD /5 pchannel device
30 MOS Transistor Applications (Digital Circuits) DD DD 2 2 X X ~ V H = V DD ~ V L = V If X=V DD, then V GS =V DD >V T, V GS2 = > V T2 S closed, S 2 open = V~
31 MOS Transistor Applications (Digital Circuits) DD DD 2 2 X X ~ V H = V DD ~ V L = V If X=V, then V GS =V<V T, V GS2 =V DD < V T2 S 2 closed, S open = V DD ~
32 MOS Transistor Applications (Digital Circuits) DD X X 2 Truth Table Performs as a digital inverter
33 MOS Transistor Applications (Digital Circuits) DD A 4 3 A B B 2 Truth Table Performs as a 2input NOR Gate Can be easily extended to an ninput NOR Gate
34 MOS Transistor Applications (Digital Circuits) DD A B Truth Table Performs as a 2input NAND Gate Can be easily extended to an ninput NAND Gate A B
35 MOS Transistor Applications (Digital Circuits) DD DD X M 2 A M 3 M 4 M M B M 2 Termed CMOS Logic Widely used in industry today (millions of transistors in many ICs using this logic Almost never used as discrete devices
36 Bipolar Transistor B: Base C: Collector E: Emitter
37 Bipolar Transistor npn pnp
38 Bipolar Transistor npn pnp ptype silicon ntype silicon
39 Vertical npn BJT Base Emitter Collector n+ buried collector implant Buried collector Vertical npn BJT
40 Lateral pnp BJT BE E C CB Lateral pnp BJT
41 Bipolar Transistor I C I B5 npn I B4 I B3 I B2 I B V CE
42 Bipolar Transistor C I C B I B V CE V BE E pnp
43 Bipolar Transistor C B E C npn CE
44 Bipolar Transistor C npn CE Most analog or linear applications based upon Forward Active region Most digital applications involve Saturation and Cutoff regions and switching between these regions as the Boolean value changes states
45 Bipolar and MOS Region Comparisons I C Saturation Forward Active V CE MOSFET BJT Cutoff Cutoff Saturation Triode Cutoff Forward Active Saturation
46 Bipolar Transistor I C I B5 I B4 I B3 I B2 I B V CE npn
47 Bipolar Transistor MultiRegion Model I βi V + = CE C B VAF JSA I B = β E e V BE V t V BE >.4V V BC < Forward Active V t = kt q V BE =.7V V CE =.2V I C <βi B Saturation I C =I B = V BE < V BC < Cutoff
48 Bipolar Transistor I C I B5 I B4 I B3 I B2 I B V CE npn C CE
49 Bipolar Transistor I C = βi JSA I B = β V t = kt q B E e V BE V t Simplifier Basic MultiRegion Model V BE >.4V V BC < Forward Active V BE =.7V V CE =.2V I C <βi B Saturation I C =I B = V BE < V BC < Cutoff
50 End of Lecture 3
EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET
EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: nchannel MOSFET Source Gate L Drain W L EFF Poly Gate oxide nactive psub depletion region (electrically
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationEE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits
EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00
More informationEE 330 Lecture 16. MOS Device Modeling pchannel nchannel comparisons Model consistency and relationships CMOS Process Flow
EE 330 Lecture 16 MOS Device Modeling pchannel nchannel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More informationEE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors
EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )
More informationEE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multipleinput gates
EE 330 Lecture 36 Digital Circuits Transfer Characteristics of the Inverter Pair One device sizing strategy Multipleinput gates Review from Last Time The basic logic gates It suffices to characterize
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationGEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More information6.012 Electronic Devices and Circuits
Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to
More informationEE 330 Lecture 16. MOSFET Modeling CMOS Process Flow
EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationLecture 210 Physical Aspects of ICs (12/15/01) Page 2101
Lecture 210 Physical Aspects of ICs (12/15/01) Page 2101 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: TextSec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits
More informationHightoLow Propagation Delay t PHL
HightoLow Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (nchannel) immediately switches from cutoff to saturation; the pchannel pullup switches from triode to
More informationSwitching circuits: basics and switching speed
ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V
More informationEE 434 Lecture 34. Logic Design
EE 434 ecture 34 ogic Design Review from last time: Transfer characteristics of the static CMOS inverter (Neglect λ effects) Case 5 M cutoff, M triode V V > V V V Tp V < V Tn V V V Tp Transfer characteristics
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationReview of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model
Content MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 20092013 Digital Switching 1 Content MOS
More informationElectronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Threeterminal device whose voltagecurrent relationship is controlled by a third voltage
More informationLecture 17  The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 171 Lecture 17  The Bipolar Junction Transistor (I) Contents: Forward Active Regime April 10, 2003 1. BJT: structure and basic operation
More informationThe Devices. Jan M. Rabaey
The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models
More informationEE 330 Lecture 17. MOSFET Modeling CMOS Process Flow
EE 330 Lecture 17 MOSFET Modeling CMOS Process Flow Review from Last Lecture Limitations of Existing Models V DD V OUT V OUT V DD?? V IN V OUT V IN V IN V DD SwitchLevel Models V DD Simple squarelaw
More informationMicroelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5 
6.012  Microelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5  Posted on Stellar. Due net Wednesday. Qualitative description  MOS in thermal equilibrium
More informationElectronic Devices and Circuits Lecture 15  Digital Circuits: Inverter Basics  Outline Announcements. = total current; I D
6.012  Electronic Devices and Circuits Lecture 15  Digital Circuits: Inverter asics  Outline Announcements Handout  Lecture Outline and Summary The MOSFET alpha factor  use definition in lecture,
More informationEE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates)
EE 330 Lecture 37 Digital Circuits Other Logic Families Static Power Dissipation Propagation Delay basic characterization Device Sizing (Inverter and multipleinput gates) Review from Last Time Inverter
More informationLecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline
Lecture 17 The Bipolar Junction Transistor (II) Regimes of Operation Outline Regimes of operation Largesignal equivalent circuit model Output characteristics Reading Assignment: Howe and Sodini; Chapter
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More information3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]
Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an nchannel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationElectronic Devices and Circuits Lecture 18  Single Transistor Amplifier Stages  Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationEE 330 Lecture 16. MOSFET Modeling CMOS Process Flow
EE 330 Lecture 16 MOFET Modeling CMO Process Flow Review from Last Lecture Limitations of Existing Models V V OUT V OUT V?? V IN V OUT V IN V IN V witchlevel Models V imple squarelaw Model Logic ate
More informationEEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring
More information1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationDigital Electronics Part II  Circuits
Digital Electronics Part  Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are nonlinear, consequently we will introduce a graphical technique for analysing such circuits The
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationFigure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors
Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationLecture 28 FieldEffect Transistors
Lecture 8 FieldEffect Transistors FieldEffect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use smallsignal equialent
More informationChargeStorage Elements: BaseCharging Capacitance C b
ChargeStorage Elements: BaseCharging Capacitance C b * Minority electrons are stored in the base  this charge q NB is a function of the baseemitter voltage * base is still neutral... majority carriers
More informationECE 342 Electronic Circuits. Lecture 34 CMOS Logic
ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic  Generalization ABC... ABC...
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationLecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multistage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier
More information6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationLecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 291 Lecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007 Contents: 1. Nonideal and secondorder
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationECE 497 JS Lecture  12 Device Technologies
ECE 497 JS Lecture  12 Device Technologies Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density
More informationEE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances
EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors
More informationLecture 11: JFET and MOSFET
ENE 311 Lecture 11: JFET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationEE 330 Lecture 18. Smallsignal Model (very preliminary) Bulk CMOS Process Flow
EE 330 Lecture 18 Smallsignal Model (very preliminary) Bulk CMOS Process Flow Review from Last Lecture How many models of the MOSFET do we have? Switchlevel model (2) Squarelaw model Squarelaw model
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationVLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT
VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) SYLLABUS UNIT II VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 m CMOS Design
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationLecture 17 The Bipolar Junction Transistor (I) Forward Active Regime
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I V characteristics in forward active regime Reading Assignment:
More informationELECTRONICS IA 2017 SCHEME
ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationLecture 10 MOSFET (III) MOSFET Equivalent Circuit Models
Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;
More informationCapacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationLecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics Lena Peterson 20151013 Outline (1) Why is the CMOS inverter gain not infinite? Largesignal
More informationFloating Point Representation and Digital Logic. Lecture 11 CS301
Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8
More informationChapter 6: FieldEffect Transistors
Chapter 6: FieldEffect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled
More informationLecture 35  Bipolar Junction Transistor (cont.) November 27, Currentvoltage characteristics of ideal BJT (cont.)
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2002 Lecture 351 Lecture 35  Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Currentvoltage characteristics of ideal BJT (cont.)
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationDigital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ualwell TrenchIsolated
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationCMOS Logic Gates. University of Connecticut 181
CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O pchannel enhancementtype MOSFET; V T < 0 nchannel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and
More informationMOS Transistor Properties Review
MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationDigital Electronics Part II Electronics, Devices and Circuits
Digital Electronics Part Electronics, Devices and Circuits Dr.. J. Wassell ntroduction n the coming lectures we will consider how logic gates can be built using electronic circuits First, basic concepts
More informationBipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
More informationLecture 12: MOSFET Devices
Lecture 12: MOSFET Devices GuYeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationMicroelectronic Devices and Circuits Lecture 13  Linear Equivalent Circuits  Outline Announcements Exam Two 
6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationFigure 1: MOSFET symbols.
c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between
More informationFieldEffect (FET) transistors
FieldEffect (FET) transistors References: Barbow (Chapter 8), Rizzoni (chapters 8 & 9) In a fieldeffect transistor (FET), the width of a conducting channel in a semiconductor and, therefore, its currentcarrying
More information2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?
EE 330 Exam 1 Spring 2017 Name Instructions: Students may bring 1 page of notes (front and back) to this exam and a calculator but the use of any device that has wireless communication capability is prohibited.
More informationThe Devices: MOS Transistors
The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor
More information