ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Size: px
Start display at page:

Download "ESE 570: Digital Integrated Circuits and VLSI Fundamentals"

Transcription

1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1

2 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level 1 Model 2

3 MOS Capacitor with External Bias! Three Regions of Operation: " Accumulation Region V G < 0 (Cutoff) " Depletion Region V G > 0, small (Subthreshold) " Inversion Region V G V T, large (Above Threshold) V G V T Cutoff/Subthreshold Above threshold Penn ESE 570 Spring 2018 Khanna 3

4 2terminal MOS Cap # 3terminal nmos VS V G V D depletion region Penn ESE 570 Spring 2018 Khanna 4

5 nmos = MOS cap + source/drain V SB = 0 V S V G V D Penn ESE 570 Spring 2018 Khanna 5

6 Review: Threshold Voltage for V SB = 0 V T =V T 0 = Φ GC Q ox C ox 2Φ F Q B0 C ox for V SB!= 0 V T = V T 0 +γ ( 2Φ F V SB 2Φ ) F γ = 2qN Aε Si C ox Penn ESE 570 Spring 2018 Khanna 6

7 MOSFET IV Characteristics 50 V DS S Drain current [arbitrary unit] Gate to source voltage [V] V GS Penn ESE 570 Spring 2018 Khanna 7

8 MOSFET IV Characteristics V DS <V GS V TH S V GS V th V DS V GS V TH Penn ESE 570 Spring 2018 Khanna V DS 8

9 Cutoff Region V GS < 0 NMOS TRANSISTOR IN CUTOFF REGION V G V D V S Depletion region Substrate or Bulk B p Immobile acceptor ions No depletion or inversion layer under oxide, no current flow 9

10 Depletion Region 0 < V GS < V TH V S V G V D depletion region Depletion layer under oxide, leakage/subthreshold current flow Penn ESE 570 Spring 2018 Khanna 10

11 Onset of Inversion Region V GS = V T0n + δ V DS = 0 V G V D Q I Q B0 Depletion region, and thin inversion layer (aka channel) Thermal equilibrium in channel, leakagelevel current flow 11

12 MOSFET IV Characteristics 50 V DS S Drain current [arbitrary unit] Gate to source voltage [V] V GS Penn ESE 570 Spring 2018 Khanna 12

13 Linear Region V GS > V T0 V DS small, V DS < V GS V T0 n + n + Channel acts like voltage controlled resistor Current flows proportional to V DS ( V DS ) As V D increases, channel depth at the drain decreases 13

14 Channel Voltage! Voltage varies along channel! Channel acts as a resistor " Serves as a voltage divider between V S and V D 14

15 Voltage along Channel! Voltage divider between V S and V D y=0 y=l V(y) y 15

16 Voltage along Channel! Voltage divider between V S and V D V(y) y=0 y=l Vd Vs y 16

17 Voltage along Channel! Voltage divider between V S and V D V(y) y=0 y=l Vd Vs y 17

18 Voltage along Channel! Voltage divider between V S and V D V(y) y=0 y=l Vd Vs y 18

19 Linear/Saturation Region Edge V GS > V T0 V DS = V GS V T0 n + n + Voltage divider along channel, until pinch off As V D increases, channel depth at the drain decreases 19

20 Channel Field! When voltage gap V G V y drops below V th, channel drops out of inversion " If V DS = V GS V th #V GS V DS =V G V D = V th 20

21 Saturation Region V GS > V T0 V DS > V GS V T0 V DS V DSAT V(x) = V DSAT n + z n + 21

22 Channel Field! When voltage gap V G V y drops below V th, drops out of inversion " What if V DS > V GS V th #V DS V GS > V th? " Upper limit on current, channel is pinched off " nmos current saturated 22

23 MOSFET IV Characteristics Linear Region V GS > V T0 V DS small, V DS < V GS V T0 n + z n + 23

24 MOSFET IV Characteristics Linear Region V GS > V T0 V DS small, V DS < V GS V T0 n + z n + V(y) Boundary Conditions: Mobile charge in inverted channel: V(y=0) = V S = 0, V(y=L) = V DS =V D Q I (y) = C ox [V GS V(y) V T0 ] 24

25 MOSFET IV Characteristics Linear Region z x y dr = dy W µ n Q I (y) µ n = electron mobility = cm 2 /(V sec) 25

26 MOSFET IV Characteristics Linear Region Q I (y) = C ox [V GS V(y) V T0 ] dr = dy W µ n Q I (y) Incremental potential drop along the channel segment with width dy dv CS dv C = dr = W µ n Q I (y) dy W µ n Q I (y) dv C = dy 26

27 MOSFET IV Characteristics Linear Region Q I (y) = C ox [V GS V(y) V T0 ] dr = dy W µ n Q I (y) Incremental potential drop along the channel segment with width dy dv CS dv C = dr = W µ n Q I (y) dy W µ n Q I (y) dv C = dy Integrate along the channel: V(y=0) = V S = 0, V(y=L) = V DS L dy = W µ n Q I ( y) dv C 0 V DS L =W µ n C ox 0 V DS 0 (V GS V C V T 0 ) dv C W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 27

28 MOSFET IV Characteristics Linear Region W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ( ' k ' = µ n C ox k = k ' W L = k ' 2 W L 2(V GS V T 0 )V DS V 2 DS ( ) = k ( 2 2(V V )V V 2 GS T 0 DS DS ) 28

29 MOSFET IV Characteristics! Example: For an nmos transistor with μ n = 600cm 2 /Vsec, C ox = 7x10 8 F/cm 2, W = 20μm, L = 2 μm, V T0 = 1V, plot the relationship between and V DS, V GS. 29

30 MOSFET IV Characteristics! Example: For an nmos transistor with μ n = 600cm 2 /Vsec, C ox = 7x10 8 F/cm 2, W = 20μm, L = 2 μm, V T0 = 1V, plot the relationship between and V DS, V GS. W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 = 0.42mA /V 2 (V GS 1.0)V DS V 2 DS 2 30

31 MOSFET IV Characteristics! Example: For an nmos transistor with μ n = 600cm 2 /Vsec, C ox = 7x10 8 F/cm 2, W = 20μm, L = 2 μm, V T0 = 1V, plot the relationship between and V DS, V GS. W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 = 0.42mA /V 2 (V GS 1.0)V DS V 2 DS 2 (V DS = V DSAT ) and V DSAT = V GS V T0 Assumptions: 31

32 MOSFET IV Characteristics W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 V DS =V DSAT =V GS V T 0 W = µ n C ox L (V V )(V V ) (V V GS T 0 )2 GS T 0 GS T 0 2 = µ n C ox 2 W L (V GS V T 0 )2 32

33 MOSFET IV Characteristics W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 LINEAR (V DS = V DSAT ) = (sat) SAT V DS =V DSAT =V GS V T 0 W = µ n C ox L (V V )(V V ) (V V GS T 0 )2 GS T 0 GS T 0 2 = µ n C ox 2 W L (V GS V T 0 )2 IN GENERAL (sat) 33

34 MOSFET IV Characteristics Saturation V DSAT V GS > V T0 V DS > V GS V T0 ΔL n + n + SAT = µ n C ox 2 W L' ( V GS V T 0 ) 2 = µ n C ox 2 W $ L& 1 ΔL % L empirically ΔL V DS V DSAT 1 ΔL L 1 λ V DS ' ) ( ( V GS V T 0 ) 2 If λ$v DS <<1, 1 ΔL L 1 λ V DS 1+ λ V DS 34

35 MOSFET IV Characteristics Saturation SAT = µ n C ox 2 W L' ( V GS V T 0 ) 2 = µ C n ox 2 W $ L& 1 ΔL % L emprically ΔL V DS V DSAT 1 ΔL L 1 λ V DS ' ) ( ( V GS V T 0 ) 2 If λ$v DS <<1, 1 ΔL L 1 λ V DS 1+ λ V DS = µ n C ox 2 W ( L V GS V T 0 ) 2 (1+ λ V DS ) 35

36 MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ( ' Saturation Region: = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) λ 0 λ=0 36

37 MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ( ' Saturation Region: = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) V DS = V DSAT λ 0 λ=0 37

38 MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ((1+ λ V DS ) ' Saturation Region: = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) V DS = V DSAT λ 0 λ=0 38

39 MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ((1+ λ V DS ) ' Saturation Region: Level 1 model λ$v DS <<1 = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) V DS = V DSAT λ 0 λ=0 39

40 MOSFET IV Characteristics, V SB 0 V T = V T 0 +γ ( 2Φ F V SB 2Φ ) F Linear Region: W # = µ n C ox L (V GS V T (V SB ))V DS V 2 DS % $ 2 & ((1+ λ V DS ) ' Saturation Region: = µ n C ox 2 W L V GS V T (V SB ) ( ) 2 (1+ λ V DS ) = f (V GS,V DS,V SB ) 40

41 nmos IV Characteristics % ' ' ' = & ' ' ' ( 0 V GS V Tn Cutoff/Subthreshold µ n C ox W ( 2 L 2 ( V GS V Tn (V SB ))V DS V 2 DS )(1+ λ V DS ) V GS > V Tn,V DS < V GS V Tn Linear/Resistive µ n C ox W ( 2 L V GS V Tn (V SB )) 2 (1+ λ V DS ) V GS > V Tn,V DS V GS V Tn Saturation 41

42 pmos IV Characteristics % ' ' ' = & ' ' ' ( 0 V GS V Tp Cutoff/Subthreshold µ p C ox W ( 2 L 2 ( V GS V Tp (V SB ))V DS V 2 DS )(1+ λ V DS ) V GS < V Tp,V DS > V GS V Tp Linear/Resistive µ p C ox W ( 2 L V GS V Tp (V SB )) 2 (1+ λ V DS ) V GS < V Tp,V DS V GS V Tp Saturation 42

43 Measurement of Parameters k n,p D G B S 43

44 Measurement of Parameters k n,p D G B S 44

45 Measurement of Parameters k n,p D G B S 45

46 Measurement of Parameters γ D G S B => SA T 46

47 Measurement of Parameters λ => SAT 47

48 Measurement of Parameters λ => SAT 48

49 Measurement of Parameters λ => SAT 49

50 Subthreshold 50

51 Below Threshold! Transition from insulating to conducting is nonlinear, but not abrupt! Current does flow " But exponentially dependent on V GS 51

52 Below Threshold! Transition from insulating to conducting is nonlinear, but not abrupt! Current does flow " But exponentially dependent on V GS 52

53 Parasitic NPN BJT! We have an NPN sandwich, mobile minority carriers in the P region! This is a BJT! " Except that the base potential is here controlled through a capacitive divider, and not directly an electrode Penn ESE 570 Spring 2018 Khanna 53

54 Subthreshold If V GS < V th, S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( )! Current is from the parasitic NPN BJT transistor when gate is below threshold and there is no conducting channel " n is the capacitive divider between parasitic capacitances " Typically 1 < n < 1.5 n = C js + C ox C ox 54

55 Subthreshold If V GS < V th, S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( )! Current is from the parasitic NPN BJT transistor when gate is below threshold and there is no conducting channel " n is the capacitive divider between parasitic capacitances " Typically 1 < n < 1.5 n = C js + C ox C ox 55

56 Subthreshold! W/L dependence follow from resistor behavior (parallel, series) " Not shown explicitly in text S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( ) 56

57 Subthreshold Slope! Exponent in V GS determines how steep the turnon is " S = n kt % $ ' ln( 10) # q & " Units: V/decade " Every S Volts, S is scaled by factor of 10 S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( ) 57

58 Subthreshold Slope! Exponent in V GS determines how steep the turnon is " S = n kt % $ ' ln( 10) # q & " Units: V/dec " Every S Volts, S is scaled by factor of 10! n depends on parasitic capacitance divider " n=1 # S=60mV at Room Temp. (ideal) " n=1.5 # S=90mV " Single gate structure showing S=90110mV 58

59 S vs. V GS (Logscale) 59

60 S vs. V GS S (Logscale) 60

61 Subthreshold Slope! If S=100mV and V th =300mV, what is Ids(Vgs=300mV)/Ids(Vgs=0V)?! What if S=60mV? " S = n$ kt # q % ' ln 10 & ( ) S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( ) 61

62 Steady State! What current flows in steady state?! What causes (and determines) the magnitude of current flow?! Which device? 62

63 Leakage! Call this steadystate current flow leakage! I ds,leak 63

64 Big Idea! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation " Pinch Off " Channel length modulation! Level 1 Model " =f (V GS, V DS, V SB ) " Empirical measured parameters: k, γ,λ 64

65 Admin! HW 2 due tonight! HW 3 due Thursday, 2/1 " Posted tonight after class " Gets you started with Cadence " Make sure you can setup and launch Cadence tonight or tomorrow " Don t wait until night before homework is due! Penn ESE 570 Spring 2018 Khanna 65

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions.  Resistive.  Saturation.  Subthreshold (next class) ESE370: ircuitlevel Modeling, Design, and Optimization for Digital Systems Lec 7: September 20, 2017 MOS Transistor Operating Regions Part 1 Today! PN Junction! MOS Transistor Topology! Threshold! Operating

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 29-1 Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 Contents: 1. Non-ideal and second-order

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

6.012 MICROELECTRONIC DEVICES AND CIRCUITS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 MICROELECTRONIC DEVICES AND CIRCUITS Answers to Exam 2 Spring 2008 Problem 1: Graded by Prof. Fonstad

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 2 What do digital IC designers need to know? 5 EE4 EECS4 6 3 0< V GS - V T < V DS Pinch-off 7 For (V GS V T )

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 016 MOS Inverter: Static Characteristics Lecture Outline! Voltage Transfer Characteristic (VTC) " Static Discipline Noise Margins!

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 Contents: 1. Second-order and

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15 ESE 570 MOS TRANSISTOR THEORY Part 1 TwoTerminal MOS Structure 2 GATE Si Oxide interface n n Mass Action Law VB 2 Chemical Periodic Table Donors American Chemical Society (ACS) Acceptors Metalloids 3 Ideal

More information

MOSFET Physics: The Long Channel Approximation

MOSFET Physics: The Long Channel Approximation MOSFET Physics: The ong Channel Approximation A basic n-channel MOSFET (Figure 1) consists of two heavily-doped n-type regions, the Source and Drain, that comprise the main terminals of the device. The

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn ) The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max = - φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information