MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA


 Allen Allen
 1 years ago
 Views:
Transcription
1 MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA
2 1930: Patent on the FieldEffect Transistor! Julius Lilienfeld filed a patent describing a threeelectrode amplifying device based on the semiconducting properties of copper sulfide. He did not demonstrate the device experimentally 2
3 MOS Transistor Demonstrated! Dawon Kahng John Atalla John Atalla and Dawon Kahng at Bell demonstrate the first successful MOS fieldeffect amplifier. 3
4 Outline Currentvoltage characteristics! Scaling and short channel behavior! Future MOS technologies! 4
5 MOS Transistor! The theory developed for the MOS capacitor can be extended directly to the MOS FieldEffectTransistor (MOSFET) by considering the following structure.! V g 0 y L n + source n + drain depletion region polysilicon gate x z ptype substrate Vbs gate oxide inversion channel V ds Enhancement mode MOSFET W V G provides control of surface carrier densities: Q=CV! For V G << V T, the structure consists of two diodes back to back and only leakage currents flow.! When V G is only slightly below V T a depletion region will be formed.! For V G > V T, an inversion layer, i.e., a conducting channel, exists between source and drain and current will flow.! For any further increase in V G the excess potential will result in an increase in the electron density in the channel! 5
6 NMOS Transistor 3D Band Diagram! Nchannel enhancement mode MOSFET, V T > 0! Pchannel enhancement mode MOSFET, V T < 0! V G = V D = 0 no carriers in the channel! electron current V G > 0, V D = 0 carriers in the channel but no movement between source and drain! V G > V T,, V D > 0 electrons flow from source to drain! Source: Sze (1981) 6
7 Variation of Drain Current with V D! (a) N+ Inversion Layer V (+) P G Depletion Region N+ +V D (small) Ι D I D Linear region! I D α V D! V D (b) N+ P V (+) G N+ +V D Ι D I D Before pinch off! V D (c) N+ Inversion layer pinches off V V D = V G D SAT ID N+ P Inversion layer pinch off! Onset of saturation! V D (d) N+ N+ Inversion layer ends V V D > V G D SAT I D P V D Saturation region I D constant with V D. (Assumption valid only for long channel)! 7
8 Complementary MOS (CMOS) Technology Nchannel MOSFET V g > 0 Pchannel MOSFET V g < 0 < 0 All the polarities for Pchannel MOSFET are opposite to that of Nchannel MOSFET 8
9 Currentvoltage characteristics! Increase in V G will result in an increase in the electron density in the channel and thus the drain current.! After pinch off drain current saturates.! Nchannel MOSFET Pchannel MOSFET I DS V DS V GS V G < V T! V GS V DS I DS For Pchannel MOSFET, all of the polarities are reversed and the inversion layer exists for V G < V T! 9
10 CMOS Inverter! V DD V DD PMOS R p V in V out V out V out NMOS R n V in = V DD V in = 0 For V g < V t the transistor is off represented by open circuit! For V g > V t the transistor is on represented by a resistor! Output is an inverted form of input waveform! CMOS inverter is the most important building block of modern logic circuits! What is the power dissipation in this circuit?! 10
11 Gradual Channel Approximation! Linear Region (small V D )! Beyond Pinchoff! p y Vertical field E x inversion layer charge! Lateral field E y flow of carriers from source to drain! Ex ρ ( x) = x ε si C ox V g = (Q i + Q d ) Q i = C ox ( Vg Vt ) inversion depletion 11 E x x E + y y = ρ ( x, y) ε E E x y >> x y Qi ( y) Cox ( Vg V ( y) Vt ) si
12 Current Voltage Dependence! dn(y) J e (y) = qd n dy Diffusion! + qµ n n(y)ε y Drift! Charge/Area! Q i (y) = qn s (y) C ox (V g V(y) V t ) y dq ( y) dy n s J J e e dv ( y dy i ) Cox 0 ( y) = n( x, y) dx & = q$ D % = D n n d ( Q ( y) / q) i dy & dqi ( y) # $! + µ nq % dy " i Sheet Charge density!, dv ( y) )# ( Q ( y) / q) * '! " + µ Current / Width (zdirection)! n i + dy ( & dv ( y) # ( y) $! % dy " 12 (1)!
13 Current vs Voltage! J e = D n & dqi ( y) # $! + µ nq % dy " i & dv ( y) # ( y) $! % dy " Diffusion! Drift! y Note that E y and Q i (y) are negative! When V GS >V T & V DS >V T diffusion current is negligible!! J J e L e 0 = µ Q ( y) n dy = µ C i n ox dv ( y) dy V DS 0 ( V GS V V t ) dv J D = W L µ # nc ox (V GS V t )V DS 1 2 V 2 DS $ % Qi ( y) Cox ( Vg V ( y) Vt ) & ( (2)! ' 13
14 For the case where backside is grounded (V B = 0) V T is given by the equation,! Threshold Voltage! V T = V FB + t ox 2ε ε s qn ( a 2 φ ) p 2φ p ox (3)! In many circuit applications backside is biased. For finite value of V B! V G = V FB + V ox + φ s  φ p + V B N+ V G N+ D P V B 14
15 Effect of Back Bias! V B = 0 V B < 0 15
16 Effect of Back Bias! In a normal MOS capacitor, application of V B will result mostly in change in V ox as φ s is fixed at φ p. If there is a nearby ntype region (drain) which contacts with the inverted surface layer the situation changes. When the surface is inverted, there is basically a PN junction at the surface. A reverse bias can be applied across the PN junction. If V B is zero, inversion occurs when φ s = φ p. If V B < 0, the semiconductor still attempts to invert when φ s reaches φ p. However, with V B < 0 any inversionlayer carriers that do appear at the semiconductor surface migrate laterally into the source and drain because these regions are at a lower potential. Not until φ s = φ p  V B, will the surface invert and normal transistor action begin. In essence, back biasing changes the inversion point in the semiconductor from φ p to φ p  V B. 16
17 Effect of Back Bias! An applied reverse bias between the induced surface nregion and the bulk increases the charge Q d in the depletion region. Since the negative charge induced by V G  V B is shared between the depletion and inversion layers, an increase of the charge in the depletion layer means that there is less charge available to form the inversion layer for a given gate voltage. Looked at another way, more gate voltage must be applied to induce the same number of electrons in the inversion layer when there is a reverse bias. With reverse bias present, the surface potential at the onset of strong inversion becomes φ s = φ p + (V D  V B ) rather than φ s = φ p. 17
18 With V D and V B applied: x dmax = 2κ sε o ( 2φ p +V D V B ) qn a V T = V D + V FB + t ox 2 K s ε o qn ( a V D 2φ p V ) B 2φ (4) p ε ox where ' C ox = ε ox t ox A = C ox A 18
19 For small values of V D and V B = 0, Expression for I D can be approximated by!!!!!!!!!!!!! This is known as LINEAR REGION.! These equations are valid only as long as an inversion layer exists all the way from source to drain (LINEAR REGION).! As V D, the effective voltage between the gate and the channel near the drain will become less than V T. This happens when V G  V T = V D. This value of drain voltage is called the saturation voltage V DSAT (or pinch off voltage because the channel is pinched off at the drain), and for higher drain voltages, a channel will not exist all the way to the drain.! I D = W L µ n ε ox t ox $ (V GS V t )V DS 1 2 V 2 DS % & N+ Inversion layer ends (pinches off) V V D > V G P ' ( ) W L µ ε ox n (V GS V t )V DS t ox N+ D SAT Depletion Region (5) 19
20 V V D > V G D SAT N+ Inversion layer ends (pinches off) P N+ Depletion Region Electrons drift along in the inversion layer and are injected into the depletion region. There the high electric field pulls them into the drain.! Further increase in V D does not change I D (to first order), I D is constant for V D > V DSAT (SATURATION REGION).! Exact V DSAT can be derived by letting Q I (y=l) = 0 in equation!! Q Q ( L) C ( V V, V ) = 0 i i ( y) Cox ( Vg V ( y) Vt ) ox g!!!!!!! V = ( V!! D, Sat! g! t!!!(6)! D V Sat ) 20 t!
21 If (6) is substituted into (5), the saturation current is!!!!!!!!!(7)! I DSAT W 2L µ n ε ox ( ) 2 t ox V G V T Further increase in V D does not change I D (to first order), I D constant for V D > V DSAT! SATURATION REGION.! 21
22 Why does the current remain constant past pinchoff (saturation): 5V V G> V T S N+ N+ D P Depleted Why doesn t increasing V D also increase I? If the current is constant, then the electric field, Ε, must also be constant along most of the channel. 22
23 Why the current remains constant past pinchoff (saturation):! 5V V G> V T S Voltage N+ N+ P Depleted D Near pinchoff, the voltage is decreasing approximately linearly, hence the Ε field is relatively constant throughout.! 23
24 Why the current remains constant past pinchoff (saturation):! 10V V G> V T S Voltage N+ N+ P Depleted D At higher V d, there is a larger depleted region, hence, greater voltage drop.! Ε is still linear in the channel but very large in depletion region.! Carriers rapidly get swept out of depletion region! 24
25 Exact Expressions! V T ( y) = V FB + 1 C ox! [ ( ( ))] 2φ p + V( y) 2ε s qn a 2φ p V B V y Q I ( y) = " [ ( )] + 2ε s qn a 2 φ p V B + V( y) C ox V G V FB + 2φ p V y [ ] I D = W L µ + % n C ox " V G V FB + 2φ p V ( D, & ' 2 ) * V D 23 2qε N % s a ' V D 2 φ p V B & ( ) 3 2 ( 2φ p V B ) 3 2 (/ * 0 ) 1 V DSAT = V G V FB + 2φ p + q ε s N a % & ( % 2 C ox '( ( ) q ε s N a C 2 ox V G V FB V B ) + * + 25
26 What about the Diffusion Current?! V GS =0 V DS =0! E c! J e = D n & dqi ( y) # $! + % dy " µ Q n i & dv ( y) # ( y) $! % dy " E f! Diffusion! Drift! E c! E fn! E v! E v! V GS ~0 V DS =+V DD! V DD! Subthreshold regime Most of the V DS drops across the reversebiased SD Junction. The Channel bands are still ~ flat. Therefore J drift is negligible Gradient of free carriers along channel is large. Diffusion component J diffusion dominates. 26
27 Subthreshold Behavior! I D Log[I D ] Fermi Dirac distribution channel Subthreshold current Ideal source V T V GS V GS V G When the surface is in weak inversion (i.e., 0 < φ s < φ p, V G < V T ), a conducting channel starts to form and a low level of current flows between source and drain.! Diffusion current due to carriers from source spilling over source barrier into channel due to application of V G to lower φ s! Weak dependence on V DS in longchannel FET! drain 27
28 I OFF Log[I D ] V T Subthreshold Conduction! $ I ON Q e (y) exp φ ' s Inversion charge & ) % kt /q( Subthreshold swing S is limited to mkt/q V G φ S = where Drain current C ox C ox + C S ( ( ) = V G V T ) V G V T m m = C + C ox S C ox $ I D Q e exp V G V T ' & ) % mkt /q( V G! φ s C ox C s = Channel Capacitance S = Subthreshold swing V G (logi D ) = V G φ S Gate to channel potential coupling m > 1 in MOSFET φ S (logi D ) = $ 1+ C S & % C ox ' ) kt ( q 60 mv/dec due to FermiDirac distribution 28
29 V T Extraction " I DSAT W 2 L µ n = W 2 L µ n V D = V G!! ε ox ( V G V T ) 2 t ox ε ox ( V D V T ) 2 t ox The intercept of I D vs V D gives the value of threshold voltage V T. This technique is widely used to extract the value of V T.! The region depicted by the dotted curve below V T is the WEAK INVERSION REGION.! 29
30 Effect of Substrate (Back Gate) Bias! For small V D N+ V P G V B N+ The change in V T due to V B is described as! D [ ]! ΔV! T = 1! 2ε C # s qn! a! 2φ p V! B! 2φ p!!(8)! ox!!!!!!!!!! 1 2ε C ox # s qn a V B = γ V B V T = V FB + t ox 2 K s ε o qn ( a 2φ p V ) B 2φ p ε ox 30 The body voltage (or backside bias) makes it easier or harder to reach inversion: > Change in threshold voltage (V T ). (9)!
31 Where!! γ = 1 2ε!! C #! s qn! a = body factor (10) ox!!!!! Equations (5) and (7) can be used to approximate the IV characteristic if V T is replaced with V T + V T.! 31
32 Channel Length Modulation! V G V D > V D SAT N+ V D 2 V D1 N+ P In the saturation region, as V D é, the depletion region near drain expands, the pinchoff point of the channel moves back towards source. The effective channel becomes shorter, I D é because it is proportional to µ/l eff. The depletion region expands as V D assuming a step junction. Provided the device has a channel length >> ΔX D then the change in channel length is approximated by difference in the depletion width of a step junction. Δ L 2 ε s q N a V D V DSAT ( ) (11) 32
33 The decrease in L is responsible for an increase in I D in the saturation region.!! Ι D Therefore, a finite output impedance results. For most applications, this is modeled as! ( ) 2 ( 1+ λv D )! I DSAT =! W!!!!!!!! 2L µ n C ox " V G V T (12) where λ = channel length modulation parameter! V D 33
34 Circuit Models! The MOS transistor may be modeled in the following manner, by inspection of its physical structure. V V V 34
35 Of the elements in the model, only the gate to channel capacitance is essential; the rest are parasitic elements which degrade performance. Technology improvements are generally designed to reduce these parasitics. In many cases, the equivalent circuit can be reduced to the following for small signals: G C GD D C GS g V m G r ds C DB S Note that many of the parameters in the model are voltage sensitive. Accurate large signal model usually requires computer techniques. 35
36 Transconductance, g m! Defined from the I D V D characteristics in both the linear and saturation regions I D = W L µ ε ox n [ V t G V T ]V D ox I DSAT W 2 L µ n ε ox ( V t G V T ) 2 ox The transconductance or gain of the device is defined as: g m = I D V G V D = const 36
37 g m = I D V G V D = const W L µ n ε ox t ox V D W L µ n ε ox t ox for V D < V DSAT, linear region ( V G V T ) for V D >V DSAT, saturation region (13) B. Gate Capacitances, C GS and C GD The gate capacitances vary as the device moves from the linear to saturation region, C GS = 1/2 C ox to 2/3 C ox from linear to saturation (14) C GD = 1/2 C ox to 1/3 C ox from linear to saturation (15) 37
38 Output Impedance, r ds! The output impedance or resistance of the device is defined as: r ds = V D I D & W ( L µ n ' V G = const ε ox t ox 1 ( ) V G V T ) + * for V D < V DSAT, linear region 1 λi D for V D > V DSAT, saturation region (16) Note: Small signal model applicable to analog applications is NOT APPLICABLE to digital applications. 38
MOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationLecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 291 Lecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007 Contents: 1. Nonideal and secondorder
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationEE105  Fall 2006 Microelectronic Devices and Circuits
EE105  Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ualwell TrenchIsolated
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationLecture 11: MOS Transistor
Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Crosssection and layout
More informationELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model
ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationLecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture
More informationMOSFET Physics: The Long Channel Approximation
MOSFET Physics: The ong Channel Approximation A basic nchannel MOSFET (Figure 1) consists of two heavilydoped ntype regions, the Source and Drain, that comprise the main terminals of the device. The
More informationLecture #27. The Short Channel Effect (SCE)
Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )
More informationECE305: Fall 2017 MOS Capacitors and Transistors
ECE305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525530, 563599) Professor Peter Bermel Electrical and Computer Engineering Purdue
More informationMOS Transistor Properties Review
MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationMOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor
MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste
More informationCHAPTER 5 MOS FIELDEFFECT TRANSISTORS
CHAPTER 5 MOS FIELDEFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancementtype NMOS transistor 5.3 IV characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5
More information6.012 MICROELECTRONIC DEVICES AND CIRCUITS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 MICROELECTRONIC DEVICES AND CIRCUITS Answers to Exam 2 Spring 2008 Problem 1: Graded by Prof. Fonstad
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 1  The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationnmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in Nwell.
nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in Nwell. nmosfet Schematic 0 y L n + source n + drain depletion region polysilicon gate x z
More informationEE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania
1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION
More informationECE606: Solid State Devices Lecture 23 MOSFET IV Characteristics MOSFET nonidealities
ECE66: Solid State evices Lecture 3 MOSFET I Characteristics MOSFET nonidealities Gerhard Klimeck gekco@purdue.edu Outline 1) Square law/ simplified bulk charge theory ) elocity saturation in simplified
More information1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012
/3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS V th " VGS vi  I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationField effect = Induction of an electronic charge due to an electric field Example: Planar capacitor
JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as
More informationLecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure
Lecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with
More informationN Channel MOSFET level 3
N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationan introduction to Semiconductor Devices
an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the MetalOxideSemiconductor FieldEffect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor 
More informationSemiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5
Semiconductor Devices C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5 Global leader in environmental and industrial measurement Wednesday 3.2. afternoon Tour around facilities & lecture
More informationTransistors  a primer
ransistors  a primer What is a transistor? Solidstate triode  threeterminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar
More informationAnalysis of Transconductances in Deep Submicron CMOS with EKV 3.0
MOS Models & Parameter Extraction Workgroup Arbeitskreis MOS Modelle & Parameterextraktion XFAB, Erfurt, Germany, October 2, 2002 Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0 Matthias
More informationThe Intrinsic Silicon
The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e 1.21/2KT cm 3 T= temperature in K o (egrees
More informationElectrical Characteristics of MOS Devices
Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Thresholdvoltage
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationLecture 23: Negative Resistance Osc, Differential Osc, and VCOs
EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationMonolithic Microwave Integrated Circuits
SMA5111  Compound Semiconductors Lecture 10  MESFET IC Applications  Outline Left over items from Lect. 9 High frequency model and performance Processing technology Monolithic Microwave Integrated Circuits
More informationELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling
ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered
More informationLecture #25. Due in class (5 PM) on Thursday May 1 st. 20 pt penalty for late submissions, accepted until 5 PM on 5/8
ecture #5 Design Project: Due in class (5 PM on hursday May 1 st 0 pt penalty for late submissions, accepted until 5 PM on 5/8 Your J design does not need to meet the performance specifications when and
More informationCharge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )
The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max =  φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:
More informationECE 340 Lecture 39 : MOS Capacitor II
ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS CapacitanceVoltage Analysis Things you should know when you leave Key Questions What are the effects
More informationAdvanced Compact Models for MOSFETs
Advanced Compact Models for MOSFETs Christian Enz, Carlos GalupMontoro, Gennady Gildenblat, Chenming Hu, Ronald van Langevelde, Mitiko MiuraMattausch, Rafael Rios, ChihTang (Tom) Sah Josef Watts (editor)
More informationLecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation
Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 2832; sec 3.2 pp. 128129 Current source Ideal goal Small signal model: Open
More informationJFET/MESFET. JFET: small gate current (reverse leakage of the gatetochannel junction) More gate leakage than MOSFET, less than bipolar.
JFET/MESFET JFET: small gate current (reverse leakage of the gatetochannel junction) More gate leakage than MOSFET, less than bipolar. JFET has higher transconductance than the MOSFET. Used in lownoise,
More informationVLSI Design and Simulation
VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage
More informationLecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD
More informationTypical example of the FET: MEtal Semiconductor FET (MESFET)
Typical example of the FET: MEtal Semiconductor FET (MESFET) Conducting channel (RED) is made of highly doped material. The electron concentration in the channel n = the donor impurity concentration N
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationMetal Oxide Semiconductor Field Effect Transistors (MOSFETs) Prof. Ali M. Niknejad Prof. Rikky Muller
EECS 105 Spring 2017, Modue 3 Meta Oxide Semiconductor Fied Effect Transistors (MOSFETs) Prof. Ai M. Niknejad Prof. Rikky Muer Department of EECS University of Caifornia, Berkeey Announcements Prof. Rikky
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationGATE SOLVED PAPER  EC
03 ONE MARK Q. In a forward biased pn junction diode, the sequence of events that best describes the mechanism of current flow is (A) injection, and subsequent diffusion and recombination of minority carriers
More informationEE 330 Lecture 16. MOSFET Modeling CMOS Process Flow
EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model
More informationMSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University
MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures
More informationCHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012
1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET DFET (Depletion MOS) MOSFET (Enhancement EFET) DC biasing Small signal
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationModeling of the Substrate Current and Characterization of Traps in MOSFETs under SubBandgap Photonic Excitation
Journal of the Korean Physical Society, Vol. 45, No. 5, November 2004, pp. 1283 1287 Modeling of the Substrate Current and Characterization of Traps in MOSFETs under SubBandgap Photonic Excitation I.
More informationAnnouncements. EE105  Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section
Announcements EE0  Fall 00 Microelectronic evices and Circuits ecture 7 Homework, due today Homework due net week ab this week Reading: Chapter MO Transistor ecture Material ast lecture iode currents
More informationField Effect Transistors
10 Field Effect Transistors Bogdan M. Wilamowski Auburn University J. avid Irwin Auburn University 10.1 Introduction... 101 10. MOS Transistor... 101 MOS Structure and Threshold Voltage MOS Transistor
More informationEKV MOS Transistor Modelling & RF Application
HPRF MOS Modelling Workshop, Munich, February 1516, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,
More informationLecture 16 The pn Junction Diode (III)
Lecture 16 The pn Junction iode (III) Outline I V Characteristics (Review) Small signal equivalent circuit model Carrier charge storage iffusion capacitance Reading Assignment: Howe and Sodini; Chapter
More informationLecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET
Lecture #23 arning for H Assignments and Exams: Make sure your writing is legible!! OUTLINE MOFET I s. V characteristic Circuit models for the MOFET resistie switch model smallsignal model Reference Reading
More informationMicroelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5 
6.012  Microelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5  Posted on Stellar. Due net Wednesday. Qualitative description  MOS in thermal equilibrium
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationLecture 8: Ballistic FET IV
Lecture 8: Ballistic FET IV 1 Lecture 1: Ballistic FETs Jena: 6170 Diffusive Field Effect Transistor Source Gate L g >> l Drain Source V GS Gate Drain I D Mean free path much shorter than channel length
More informationHightoLow Propagation Delay t PHL
HightoLow Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (nchannel) immediately switches from cutoff to saturation; the pchannel pullup switches from triode to
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationEE382M14 CMOS Analog Integrated Circuit Design
EE382M14 CMOS Analog Integrated Circuit Design Lecture 3, MOS Capacitances, Passive Components, and Layout of Analog Integrated Circuits MOS Capacitances Type of MOS transistor capacitors Depletion capacitance
More informationCMOS Transistors, Gates, and Wires
CMOS Transistors, Gates, and Wires Should the hardware abstraction layers make today s lecture irrelevant? pplication R P C W / R W C W / 6.375 Complex Digital Systems Christopher atten February 5, 006
More informationMOS Devices and Circuits
hapter 3 Microelectronics and emiconductor Materials MO Devices and ircuits Prepared by Dr. Lim oo King 0 Jan 011 hapter 3 MO Devices and ircuits... 97 3.0 Introduction... 97 3.1 MO apacitor... 97 3.1.1
More informationStep 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since
Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M  0 > V M  V Tn V SDp = V DD  V M = (V DD  V M ) V Tp Equate drain
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationEE410 vs. Advanced CMOS Structures
EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + polysi N + polysi Al/Si alloy LPCVD PSG P + P + N + N + PMOS Nsubstrate NMOS Pwell
More informationA Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs
ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 11, Number 4, 2008, 383 395 A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs Andrei SEVCENCO,
More informationElectronic Devices and Circuits Lecture 14  Linear Equivalent Circuits  Outline Announcements
6.012 Electronic Devices and Circuits Lecture 14 Linear Equivalent Circuits Outline Announcements Handout Lecture Outline and Summary Review Adding refinements to large signal models Charge stores: depletion
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationjunctions produce nonlinear current voltage characteristics which can be exploited
Chapter 6 PN DODES Junctions between nand ptype semiconductors are extremely important foravariety of devices. Diodes based on pn junctions produce nonlinear current voltage characteristics which can
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationThis article has been accepted and published on JSTAGE in advance of copyediting. Content is final as presented.
This article has been accepted and published on JSTAGE in advance of copyediting. Content is final as presented. References IEICE Electronics Express, Vol.* No.*,** Effects of Gammaray radiation on
More informationJFETs  MESFETs  MODFETs
Technische Universität raz Institute of Solid State Physics JFETs  MESFETs  MOFETs JFET n nchannel JFET S nchannel JFET x n 2 ( Vbi V) en S pchannel JFET 2 Pinchoff at h = x en n h Vp 2 V p = pinchoff
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationSemiconductor Memory Classification
Semiconductor Memory Classification ReadWrite Memory NonVolatile ReadWrite Memory ReadOnly Memory Random Access NonRandom Access EPROM E 2 PROM MaskProgrammed Programmable (PROM) SRAM FIFO FLASH
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationCMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!
Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and
More informationECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1
Power Amplifiers; Part 1 Class A Device Limitations Large signal output match Define efficiency, poweradded efficiency Class A operating conditions Thermal resistance We have studied the design of smallsignal
More informationAnalysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements
Analysis and Design of Analog Integrated Circuits Lecture 14 Noise Spectral Analysis for Circuit Elements Michael H. Perrott March 18, 01 Copyright 01 by Michael H. Perrott All rights reserved. Recall
More informationPOCKET or halo implants in CMOS technology were originally
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 7, JULY 26 1641 Analysis of the Subthreshold Current of Pocket or HaloImplanted nmosfets Raymond J. E. Hueting, Senior Member, IEEE, and Anco Heringa
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More information