The Devices: MOS Transistors


 Valentine Reynolds
 1 years ago
 Views:
Transcription
1 The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall
2 NMOS Transistor Gate Oxide Field Oxide CROSSSECTION of NMOS Transistor
3 CrossSection of CMOS Technology
4 CurrentVoltage Relations V GS V V DS I D  + V(x) L x At x, the gate to channel voltage equals V GS  V(x)
5 Transistor in Linear Region Assume that the voltage exceeds V T all along the channel Induced charge/area at point x Current Qi ( x) Cox[ VGS V( x) VT ] ID vn ( x). Qi ( x). W v n (x) : drift velocity Id dx n. Cox. W( VGS V VT ) dv Integrating over the length of the channel L v n E( x) n n dv dx I D K' K' n n n W L ox (( V GS C n V C T ox ox T ). V DS 2 DS V 2 )
6 Transistor In Saturation
7 Transistor in Saturation If drainsource voltage increases, the assumption that the channel voltage is larger than V T all along the channel ceases to hold. When V GS  V(x) < V T pinchoff occurs Pinchoff condition V GS V DS V T
8 Saturation Current The voltage difference over the induced channel (from pinchoff to the source) remains fixed at V GS  V T and hence, the current remains constant. Replacing V DS by V GS V T in equation for I D yields I D K' 2 n W L ( V GS V T 2 ) Effective length of the conductive channel is modulated by applied V DS  Channel Length Modulation
9 CurrentVoltage Relations Cutoff: V GS V T, I DS 0 Linear Region: V DS < V GS  V T I k' n D k C n ' n W L ox DS V 2 GS VT VDS n t ox ox V 2 Process Transconductance Parameter Saturation Mode: V DS V GS  V T Channel Length Modulation I D k' n W 2 GS T 1 2 L V V V DS
10 IV Relations Linear: V DS < V GS  V T Linear (a) ID as a function of VDS I D (b) as a function of V GS (for V DS = 5V) NMOS Enhancement Transistor: W = 100 m,l = 20 m
11 Threshold Voltage: Concept V T = V FB + V B + V ox V B = 2f F (strong inversion)
12 MOSCAP Band Diagrams
13 Energy band diagram E vac Vacuum Level 0.95 ev qϕ m = 4.1 ev E c qχ = 4.05 ev qϕ s E f 89 ev E c E f E g = 1.12 ev Metal (aluminum) E v Ptype silicon E v qϕ s = qχ + Eg/2 + qϕ B Silicon Dioxide
14 MOScap: Equilibrium E vac qϕ m qϕ s Here, ϕ m = ϕ s Flat band condition E f E c E f ϕ s can be changed with doping Gate Ptype Si E v Bands will not be flat if ϕ m ϕ s  apply a negative voltage (ϕ m  ϕ s ) with respect to Si substrate M O S
15 MOScap: Accumulation Negative gate voltage Surface potential (ψ s ) < 0 Bands bend upwards E f V g < E c Gate E f ψ (bulk) = 0 E v Accumulation of holes No band bending deep in the bulk The electric field causes band bending Electric field at any point is the slope of E c or E v at that point The electrostatic potential (ψ) at any point is the net band bending at that point
16 MOScap: Depletion Positive gate voltage V g > 0 Surface potential (ψ s ) > 0 E c E f ψ (bulk) = 0 E f + + E v Gate Depletion region For a small positive gate bias: Bands bend downwards at the surface i.e. E v moves away from E f Majority carriers (holes) are depleted at the surface
17 MOScap: Inversion Surface potential (ψ s ) > 0 Inversion layer at the surface E c ψ (bulk) = 0 V g > E f E f Gate E v Channel at the surface is inverted when (ψ s = 2ψ B ) ( inv) 2 s B kbt 2 q ln N n Where, N a = Doping density in the bulk (cm 3 ) n i = Intrinsic carrier concentration ~ 10E10 (cm 3 ) i a
18 Threshold Adjustment by Ion Implantation Implant a relatively small, precisely controlled number of either boron or phosphorus ions into the nearsurface region of semiconductor Implantation of boron causes a positive shift in threshold voltage Implantation of phosphorus causes a negative shift Like placing additional fixed charges V Q C I ox Q I qn I ( ) : donor ( ) : acceptor
19 Back Biasing or Body Effect V SB is normally positive for nchannel devices, negative for pchannel devices Always increases the magnitude of the ideal device threshold voltage Inversion occurs at f S = (2f F + V SB ) Increases the charges stored in depletion region Q B 2qN A si(2f F VSB)
20 Threshold voltage V T V FB V B V ox V T ms Q C I ox 2 F Q C B ox
21 Dynamic Behavior of MOS Transistor Source of Cap.  Basic MOS structure  channel charge  depletion region of resource bias pn junctions
22 The Gate Capacitance C gdo Lateral diffusion (a) Top view C GSO (b) Crosssection s C gate t ox ox WL C SB P C DB Can be decomposed into a number of elements each with a different behavior
23 The Gate Capacitance Parasitic capacitance between gate and source (drain) called Overlap Capacitance (linear) C gso = C gdo = C ox.x d.w = C o.w Channel Capacitance: C gs, C gd, and C gb CutOff: no channel, total capacitance = C ox WL eff appears between gate and bulk Triode Region: Inversion layer  acts as conductor C gb 0 Saturation: Pinch off, Symmetry dictates C gd 0, C 0 gb C gs C gd C ox WL 2 eff C gs averages (2/3)C ox WL eff
24 Diffusion Capacitance (Junction Capacitance) Reverse biased sourcebulk and drainbulk pn junctions
25 Diffusion Capacitance (Junction Capacitance)  Bottom plate C bottom = C j WL s,  Sidewall junctions  formed by source (N D ) and P + channel stop (N A+ ) C sw = C jsw x j (w+2l s ) = C jsw (W + 2L s )  graded junction (m=1/3) C jsw = C jsw x j, x j = junction depth  C diff = C bottom + C sw = C j * Area + C jsw x Perimeter = C j L s W + C jsw (2L s + W)
26 Junction Capacitance V D (V) C j C j0 ( 1VD / 0 f ) m
27 The SubMicron MOS Transistor Threshold Variations (Manufacturing tech., V SB ) Parasitic Resistances Velocity Saturation and Mobility Degradation Subthreshold Conduction Latchup
28 Threshold Variations In derivation of V T the following assumption were made: charge beneath gate originates from MOS field effects ignores depletion region the source and drain junctions (reverse biased) A part of the region below the gate is already depleted (by source & drain fields), a smaller V T suffices to cause strong inversion V T decreases with L Similar effect can be obtained by increasing V DS or V DB as it increases drainjunction depletion region V T V T Long channel L Low V DS Low L V DS DIBL (Drain Induced Barrier Lowering)
29 Threshold Variations V T can also drift over time (Hotcarrier effect) Decreased device dimensions Increase in electrical field Increasing velocity of electrons, can leave Si surface and enter gate oxide Electrons trapped in gate oxide change V T (increases in NMOS, decreases in PMOS) For a electron to be hot, electric field of 10 4 V/cm is necessary Condition easily met for submicron devices
30 Parasitic Resistances R L W S R[] R C Solutions: cover the diffusion regions with lowresistivity material such as titanium or tungsten, or make the transistor wider
31 Velocity Saturation (1) short channel devices cm/sec (a) Velocity saturation (b) Mobility degradation
32 Velocity Saturation (2) I DSAT v SAT C ox W V ( GS VDSAT VT ) Linear Dependence on V GS independent on L current drive cannot be improved by decreasing L
33 Subthreshold Conduction I D K e ( V V ) q/ nkt V q/ kt gs t (1 e ds ) V GS < V T SOI has better subthreshold leakage d dv (Inverse) Rate of decrease of current : ln( I ) D ln10(1 ) GS 1 KT q 60mV/decade At T= 300 o K
34 Latchup NMOS PMOS S D D S V B > V BE (a) Origin of latchup (b) Equivalent circuit
35 Latchup Parasitic circuit effect Shorting of V DD and V SS lines resulting in chip selfdestruction or system failure with requirements to power down To understand latchup consider: Silicon Controlled Rectifiers (SCRs) Anode A I a I b1 p n p n Cathode C Gate G I c1 I c2 A C G I g I b2 I c
36 Latchup If I g I c2 I c2 is the base current I b1 of the pnp transistor I g I b1 I c1 I b2 (magnitude of current increases) If the gain of the transistor are b 1 and b 2 Then if b 1 b 2 1, the feedback action will turn device ON permanently and current will self destruct device.
37 Latchup Triggering Parasitic npn & pinp has to be triggered and holding state to be maintained Can be triggered by transient currents Voltages during powerup Radiation pulses Voltages or current beyond operating range I ntrigger V pnpon npn. R well Lateral triggering npn : Common base gain of npn transistor Similarly, vertical triggering due to the voltage drop across R substrate as current is injected into the emitter
38 Latchup Triggering Triggering occurs due to (mainly) I/O circuits where internal voltages meet external world and large currents can flow When NMOS experiences undershoot by more than 0.7V, the drain is forward biased, which initiates latchup When PMOS experiences overshoot by more than 0.7V, the drain is forward biased, which initiates latchup
39 Latchup Prevention Analysis of the circuit shows that for latchup to occur the following inequality has to be true ( bnpn 1)( I Rsub I Rwell. b pnp) bnpnb pnp 1 I I where I I I Rsub Rwell DD V benpn R V R sub bepnp well total supply current The feedback current flowing into npn base is collector current offset by I Rsub. To cause the feedback, this current must be greater than initial npn base current, I b. DD Rsub
40 Prevention of latchup Reduce the resistor values (substrate & well) and reduce the gain of parasitic transistors Latchup resistant CMOS process Layout techniques
41 Spice Models Level 1: Long Channel Equations  Very Simple Level 2: Physical Model  Includes Velocity Saturation and Threshold Variations Level 3: SemiEmperical  Based on curve fitting to measured devices Level 4 (BSIM): EmpericalSimple and Popular
42 Main MOS Spice Parameters
43 SPICE Parameters for Parasitics
44 SPICE Transistor Parameters
45 Technology Evolution
MOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationThe Devices. Jan M. Rabaey
The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationThe Devices. Devices
The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ FieldOxyde (SiO 2 ) psubstrate p+ stopper Bulk Contact CROSSSECTION of NMOS Transistor CrossSection of CMOS Technology MOS transistors
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 1  The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationDigital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ualwell TrenchIsolated
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationEEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring
More informationLecture 5: CMOS Transistor Theory
Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos IV Characteristics
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing
EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104113) S R on D CMOS Manufacturing Process (pp. 3646) S S C GS G G C GD
More informationVLSI Design The MOS Transistor
VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV
More informationMOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA
MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the FieldEffect Transistor! Julius Lilienfeld filed a patent describing
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationFundamentals of the Metal Oxide Semiconductor FieldEffect Transistor
Triode Working FET Fundamentals of the Metal Oxide Semiconductor FieldEffect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the
More informationLecture 04 Review of MOSFET
ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationEE105  Fall 2006 Microelectronic Devices and Circuits
EE105  Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM
More informationB.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.
June 26, 2004 oal of this chapter Chapter 2 MO Transistor Theory oonchuay upmonchai Integrated esign Application Research (IAR) Laboratory June 16th, 2004; Revised June 16th, 2005 q Present intuitive understanding
More informationMOS CAPACITOR AND MOSFET
EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure
More informationLECTURE 3 MOSFETS II. MOS SCALING What is Scaling?
LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationECE321 Electronics I
EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman ZarkeshHa Office: EE Bldg. 3B Office hours: Tuesday :3:PM or by appointment Email: payman@ece.unm.edu Slide: 1
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More information! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!
More informationVLSI Design and Simulation
VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More informationECE 497 JS Lecture  12 Device Technologies
ECE 497 JS Lecture  12 Device Technologies Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density
More informationII III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing
II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III  V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band
More informationPractice 3: Semiconductors
Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationMOSFET Capacitance Model
MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationIntroduction and Background
Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat AbuTaha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationLecture 12: MOSFET Devices
Lecture 12: MOSFET Devices GuYeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationNanoscale CMOS Design Issues
Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI1 Class Transistor IV Review Agenda Nonideal
More information1. The MOS Transistor. Electrical Conduction in Solids
Electrical Conduction in Solids!The band diagram describes the energy levels for electron in solids.!the lower filled band is named Valence Band.!The upper vacant band is named conduction band.!the distance
More informationEE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania
1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION
More informationMOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor
MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste
More informationL ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling
L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationMOS Transistor Properties Review
MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO
More informationEE105  Fall 2005 Microelectronic Devices and Circuits
EE105  Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture
More informationELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model
ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationIntroduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline
Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and
More informationEE 560 MOS TRANSISTOR THEORY
1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE ptype doped Si (N A = 10 15 to 10 16 cm 3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "
More informationMOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.
INEL 6055  Solid State Electronics ECE Dept. UPRM 20th March 2006 Definitions MOS Capacitor Isolated Metal, SiO 2, Si Threshold Voltage qφ m metal d vacuum level SiO qχ 2 E g /2 qφ F E C E i E F E v qφ
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationECE305: Fall 2017 MOS Capacitors and Transistors
ECE305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525530, 563599) Professor Peter Bermel Electrical and Computer Engineering Purdue
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationChapter 2 CMOS Transistor Theory. JinFu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 CMOS Transistor Theory JinFu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor JinFu Li, EE,
More informationSECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University
NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula
More informationMetaloxidesemiconductor field effect transistors (2 lectures)
Metalidesemiconductor field effect transistors ( lectures) MOS physics (brief in book) Currentvoltage characteristics  pinchoff / channel length modulation  weak inversion  velocity saturation 
More informationCourse Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance
Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka
More information! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)
ESE370: ircuitlevel Modeling, Design, and Optimization for Digital Systems Lec 7: September 20, 2017 MOS Transistor Operating Regions Part 1 Today! PN Junction! MOS Transistor Topology! Threshold! Operating
More informationVLSI Design I; A. Milenkovic 1
Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (
More informationLecture 11: MOSFET Modeling
Digital Integrated Circuits (83313) Lecture 11: MOSFET ing Semester B, 201617 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,
More informationCircuits. L2: MOS Models2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. GNumber
EE610: CMOS Analog Circuits L: MOS Models (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >
More informationThe Intrinsic Silicon
The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e 1.21/2KT cm 3 T= temperature in K o (egrees
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects
More informationECEN474/704: (Analog) VLSI Circuit Design Spring 2018
ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & MixedSignal Center exas A&M University Announcements If you haven t already, turn in your 0.18um
More informationChapter 2 MOS Transistor theory
Chapter MOS Transistor theory.1 Introduction An MOS transistor is a majoritycarrier device, which the current a conductg channel between the source and the dra is modulated by a voltage applied to the
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007
More informationLecture 11: MOS Transistor
Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Crosssection and layout
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More informationMicroelectronics Part 1: Main CMOS circuits design rules
GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! medamine.miled@polymtl.ca!
More informationESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET NType, PType. Semiconductor Physics.
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff
More informationVirtual Device Simulation. Virtual Process Integration
: CMOS Process and Device Simulation Virtual Device Simulation Virtual Process Integration Dr Zhou Xing Office: S1B1c95 Phone: 67904532 Email: exzhou@ntu.edu.sg Web: http://www.ntu.edu.sg/home/exzhou/teaching//
More informationUniversity of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA
University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm 3 @
More informationLecture 12: MOS Capacitors, transistors. Context
Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those
More informationLecture #27. The Short Channel Effect (SCE)
Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )
More informationCheck course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory
EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday
More informationLong Channel MOS Transistors
Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to MetalOxideSemiconductor FieldEffect transistors (MOSFET) by considering the following structure:
More informationMOSFET Physics: The Long Channel Approximation
MOSFET Physics: The ong Channel Approximation A basic nchannel MOSFET (Figure 1) consists of two heavilydoped ntype regions, the Source and Drain, that comprise the main terminals of the device. The
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.
More informationECE315 / ECE515 Lecture2 Date:
Lecture2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS IV Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cutoff Linear/Triode
More informationMOSFET. IdVd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th
MOSFET IdVd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance
More informationOperation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS
Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2
More information