Full Length Test Electronics and Communication Engineering

Size: px
Start display at page:

Download "Full Length Test Electronics and Communication Engineering"

Transcription

1 1 [Ans A] PQRS P PQRSS P S QR P S Q QR Q P S R Q P S R (Q P S ) SPQ Full Length Test Electronics and Communication Engineering Answer Keys and Eplanations 2 [Ans A] Green s theorem and stokes theorem convert line integral to surface integral and vice versa Whereas Gauss s ivergence theorem converts from surface to volume and vice versa 3 [Ans *] Range: 5 to 5 y ( ) y( ) y( ) y 4 [Ans A] Maimum value of y over the interval 2 to 5 will be at = 5 Let S n r n / d sin 5 [Ans ] : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 1

2 Given ( ) sin y sin sin sin cos sin sin (sin ) sin 6 [Ans C] By KL i 7 [Ans *] Range: 015 to 016 Bandwidth of series RLC circuit R rad sec L rad sec z z 8 [Ans B] n T e n n ( e e ) n (y) n () e e 9 [Ans C] Since, thermal run away is due to minority charge carriers and in FET, the conduction is due to majority carriers, so as temperature increases, mobility decreases and thus no trouble of thermal stability : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 2

3 10 [Ans *] Range to L cm cm N cm and N cm L R where qn (N N N ) -cm R 11 [Ans *] Range: 0008 to 001 Open loop gain A da d d d ( ) ( ) : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 3

4 12 [Ans *] Range: 32 to 31 k k O Using KCL k k k [ [ ] ] 13 [Ans *] Range: 55 to 58 R R r R Where, ( g R ) and R R and R r R R R k ( ) p k R sec f M z : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 4

5 14 [Ans ] X X X X X Minimised form is 15 [Ans ] f X y y 1 st nd rd th f X y nd f X y after clock X 16 [Ans ] MUX M S S M J K = XOR (J, K) J k : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 5

6 17 [Ans B] (t) t Since the wave has odd symmetry, hence a 18 [Ans A] h(n), (n) (n )- (z), z - Put z e (e ) [ e ] e [e e ] (e ) e cos (e ) e cos cos 19 [Ans *] Range: 6 to 6 y(t) ( t) (t) ( t) f (t) is band limited to f z Then ( t) is band limited to f Hz Nyquist rate f f a 20 [Ans C] Maimum occurs at n where n is odd ence first maimum occurs at s s s s omparing and : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 6

7 21 [Ans ] u S u S S u u [ ] [ ] [ ] [ ] 0 u u 1 One can denote any state by any name; changing and So, that answer is d dt [ ] [ ] ( ) [ ] u u / 22 [Ans *] Range: 4391 to 44 SQNR log ( ) d s log SQNR log d log s 23 [Ans *] Range: 2 to 2 cos t cos t cos t cos t [ cos t] or envelope detection Should be atleast : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 7

8 24 [Ans A] e cos y e sin y ( ) at ( )is m harge enclosed ( ) 25 [Ans *] Range: 9 to 9 cos( t ) elocity of EM wave in a los-less medium, - m sec 26 [Ans ], Multiplying both sides by b 0 1 [ (b b ) ( b) ] [ ( b ) ( b b ) b ] 27 [Ans ] Given that a > 0 So, a ( ) nd also g() So a ( ) g() for all R a ( ) g() Has no solution 28 [Ans A] z e ( iy) e ( ) ( y y)(e )(cos y i sin y) (e ),( y ) cos y y sin y- : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 8

9 29 [Ans C] or T mode f u Since the wave guide is air filled u c a ence f z G z As f = 4 GHz f, the T mode will propagated u m s / / u ( ) phase velocity group velocity m s 30 [Ans*] Range: 4 to 4 urrent at node e (sin t cos t) d dt e (sin t cos t) e (cos t sin t) d dt *e (cos t sin t)+ L di dt e sin t e cos t k k k k 31 [Ans *] Range: 24 to 24 By KCL at output node So ( ) S M S M : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 9

10 32 [Ans *] Range: i i ( ) i ( ) t t ( ) 33 [Ans B] Means : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 10

11 34 [Ans B] Effective density of states Function (N ) = Therefore, the electron conduction is given by cm n N ep [ kt ] ep ( cm ) 35 [Ans *] Range: 13 to 13 cm sec cm sec So, diffusion length of holes, L m cm 36 [Ans A] Case I: CB configuration mitter injection efficiency ase transport factor input current n Case II: CE configuration T K T T / ( ) m ( ) ( ) : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 11

12 37 [Ans *]Range 450 to 500 k i i and k i ( k ) for and for Regulation Regulation : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 12

13 38 [Ans *] Range: 25 to 30 For current through the 3k resistance connected in the collector terminal of pnp transistor is O ( ) m k Therefore, emitter potential of the pnp transistor oltage drop across k Resistor m k current through k resistor m k k Now for Base of npn transistor is grounded ie at 0 Therefore oltage drop across R = ( ) Current through R = 2mA Required value of R m k m k m k Q Q m k m R 39 [Ans C] f R R or R R R R ( )( ) z : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 13

14 40 [Ans *]Range: 37 to 4 For proper functioning the clock period should be equal to or greater than all t MO 12 s ns t of N N ns Total t ns s f z M z 41 [Ans *] Range: 1 to 1 A Q X X Y J K Q A = 0 A = 1 A = 0 Q = 0 Q = 1 A = 1 State changes when A = 1 : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 14

15 42 [Ans B] LX B, 2100 H LX, 0200 H LX SP, 2700 PUSH B PUSH LX H, 0100 XTHL A L L HLT,E pair remains unchanged L : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 15

16 43 [Ans B] (t) (n) { } t h(t) h(n) * + t (n) h(n) y(t) y(n) { } t y(t)dt (from the figure) 44 [Ans *] Range: 79 to 81 To solve this problem we could compute the analytical epression for the inverse Z-T, and then we could evaluate that epression at k=3 An alternative method to recall that (z) f, - f, -z f, -z f, -z f, -z ie, f[k] can be computed by epanding the fraction in power of z This can be done by dividing n(z) by d(z) upto the term z, its coefficient is equal to f[3] z z z z ) z z z z ( z z z z z z z z So, coefficient is 8 z z z z z z z z z z z z z z z z : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 16

17 45 [Ans C] y stokes theorem ( ) ds dr i j k y z y z yz i(z ) k( z ),i(z ) k( z )- k (z ) (z )ds (z ) ds 46 [Ans ] ( ( ))u ( ( ))u z ( ( ))u [ ] [ ] [ ] [ ],u- y 47 [Ans *] Range: 30 to 30 Standard form of Phase Lead ompensator G (s) Or T T T T by comparing equation and T s T s sin [ ] = sin [ ] rad : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 17

18 48 [Ans ] For stable system s should have roots in left half s plane s s s y (s ),(s y)(s ) - s (s ),s s( y) y- The roots to lie in left hand plane, y And y y y and y 49 [Ans ] For a single tone SSB-SC signal the waveform after carrier reinsertion becomes s (t) s(t) c(l) cos( t t) cos t ( cos t) cos t sin t sin t The output of the demodulation is given by [the envelope will be] (t), cos t-,sin t- cos t [ cos t] [ cos t], inomial epansion- cos t Neglecting dc component the normalized power of detected signal will be P [ ] Given P [ ] : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 18

19 50 [Ans A] X (t), (t)- os t S, (t)- f ()d ( )d For m=1, ( S N ) S S ( S N ) / / ( S N ) ( S N ) / ( ) ( ) =31 m 51 [Ans *] Range: 247 to 247 Let the image frequency rejection ratio of the RF amplifier to be added be The rejection ratio ( ) at 1100 khz: f f f k z f f f f Q ( ) ( ) The rejection ratio ( ) at 25 MHz: f k z f f f f Q ( ) ( ) According to requirement ( ) ( ) So, loaded Q required for the RF stage Q (Q ) (Q ) ( ) : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 19

20 52 [Ans C] BW of voice signal z The number of quantizing levels Number of bits required for sampling + supervision Number of the bits in each frame For synchronization Required W k z 53 [Ans *] Range: 240 to 240 ( t) cos( t ) verage power density ( )( ) ( ) verage power r ( ) ( ) ( ) watts 54 [Ans ] Airline can be regarded as a loss less line R G R L L rad m ividing by equation R and R ( ) rom equation L R ( ) ( ) n m p m : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 20

21 55 [Ans *] Range: 881 to 886 dv d d d ( ) m negry nergy density volume nergy ( ) volume nergy ( ), d- mj J, - 56 [Ans ] They will chime together after the time in minutes equal to L M of L M min hrs min 57 [Ans C] According to the statement, 80% of the total runs were made by spinners So, conclusion I does not follow Nothing about the opening batsmen is mentioned in the statement So, conclusion II also does not follow 58 [Ans ] 1 km = 1000 meter 1 min = 60 second verage speed Total distance Total time Total distance = 12 km = meter Total time = minute = = 1440 seconds verage speed m s 59 [Ans A] 60 [Ans C] CEPQS - E cannot go with S AEPQS - C and P have to be together E cannot go with S ACPRS -It satisfies all the conditions and also there are two boys in the team BPRS - C and P have to be together Hence, C : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 21

22 61 [Ans A] Number of males in U P [ of ( of N)] N Total population N Number of males in M P [ of ( of N)] N Number of males in Goa [ of ( of N)] N N N N Total males in these states ( )N N Required ( N ) 62 [Ans C] A cube is cut into 125 smaller cubes Length of cube = l = 5 unit Let upper face be coloured red Then bottom face will be coloured green, two adjacent faces are coloured yellow and blue respectively Two faces are uncoloured Number of cubes uncoloured on all faces = (n ) ( ) Now there are two surfaces which are not coloured There will be 9 cubes at centre on both the uncoloured surfaces each 3 cubes at the common edge of both uncoloured surfaces Total number of uncoloured cubes = = [Ans C] 64 [Ans B] The passage clearly states the unawareness of teachers regarding population education Thus, the teachers should be given a proper orientation on the same : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 22

23 65 [Ans C] In statement I nothing is given about c Hence it is not enough to answer the question In statement II nothing is mentioned about a Hence this statement alone cannot answer the question Combining both the statements we get a : b : c = 3 : 15 : 10 a : c = 3 :10 a c a c c Question can be answered using both the statements Hence, C : , info@thegateacademycom Copyright reserved Web:wwwthegateacademycom 23

GATE-2019 Full Length Test Electrical Engineering Test ID: EE-FLT-2019

GATE-2019 Full Length Test Electrical Engineering Test ID: EE-FLT-2019 Name:... GATE-2019 Full Length Test Electrical Engineering Duration: 3 hours Maimum marks : 100 Please read the following instructions carefully General nstructions 1. Total duration of eamination is 180

More information

Full Length Test Civil Engineering

Full Length Test Civil Engineering Full ength Test ivil Engineering nswer Keys and Explanations 1 [ns ] Green s theorem and stokes theorem convert line integral to surface integral and vice versa Whereas Gauss s Divergence theorem converts

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

GATE 2017 ECE Session 3 Answer Key

GATE 2017 ECE Session 3 Answer Key 1. Three pair cubical dice are thrown simultaneously. What is the probability that all three dice have same number is... Ans. ( 1 36 ). The one of the eigen value is real, rest are imaginary the real value

More information

Chapter 9 Bipolar Junction Transistor

Chapter 9 Bipolar Junction Transistor hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. Q. 5 carry one mark each. Q. Consider a system of linear equations: x y 3z =, x 3y 4z =, and x 4y 6 z = k. The value of k for which the system has infinitely many solutions is. Q. A function 3 = is

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

GATE : , Copyright reserved. Web:www.thegateacademy.com

GATE : , Copyright reserved. Web:www.thegateacademy.com GATE-2016 Index 1. Question Paper Analysis 2. Question Paper & Answer keys : 080-617 66 222, info@thegateacademy.com Copyright reserved. Web:www.thegateacademy.com ANALYSIS OF GATE 2016 Electrical Engineering

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Forward-Active Terminal Currents

Forward-Active Terminal Currents Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 5 SET- ELECTRONICS AND COMMUNICATION ENGINEERING - EC Q. Q. 5 carry one mark each. Q. The bilateral Laplace transform of a function is if a t b f() t = otherwise (A) a b s (B) s e ( a b) s (C) e as

More information

Conventional Paper I-2010

Conventional Paper I-2010 Conventional Paper I-010 1. (a) Sketch the covalent bonding of Si atoms in a intrinsic Si crystal Illustrate with sketches the formation of bonding in presence of donor and acceptor atoms. Sketch the energy

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2 Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + = is (A) 1 (B) 2 (C) 3 (D) 4 2. The Fourier series of a real periodic function has only P. Cosine terms if it is

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo su7ms_elct7.fm - Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm - Problem 7 points Equation (-)

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

ANALYSIS OF GATE 2018* (Memory Based) Electronics and Communication Engineering

ANALYSIS OF GATE 2018* (Memory Based) Electronics and Communication Engineering ANALYSS OF GATE 2018* (Memory Based) Electronics and Communication Engineering Electromagnetic Theory 8% Electronic Device Circuits 12% General Aptitude 15% Engineering Mathematics 14% Network Theory 7%

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Electronics and Communication Exercise 1

Electronics and Communication Exercise 1 Electronics and Communication Exercise 1 1. For matrices of same dimension M, N and scalar c, which one of these properties DOES NOT ALWAYS hold? (A) (M T ) T = M (C) (M + N) T = M T + N T (B) (cm)+ =

More information

1.1 An excitation is applied to a system at t = T and its response is zero for < t < T. Such a system is (a) non-causal system.

1.1 An excitation is applied to a system at t = T and its response is zero for < t < T. Such a system is (a) non-causal system. . An excitation is applied to a system at t = T and its response is zero for < t < T. Such a system is (a) non-causal system x(t) (b) stable system (c) causal system (d) unstable system t=t t. In a series

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises Page Microelectronic Circuit esign Fourth Edition - Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or ) 5.V 3.95 V V

More information

Nyquist-Rate A/D Converters

Nyquist-Rate A/D Converters IsLab Analog Integrated ircuit Design AD-51 Nyquist-ate A/D onverters כ Kyungpook National University IsLab Analog Integrated ircuit Design AD-1 Nyquist-ate MOS A/D onverters Nyquist-rate : oversampling

More information

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution . (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

EE 330 Lecture 20. Bipolar Device Modeling

EE 330 Lecture 20. Bipolar Device Modeling 330 Lecture 20 ipolar Device Modeling xam 2 Friday March 9 xam 3 Friday April 13 Review from Last Lecture ipolar Transistors npn stack pnp stack ipolar Devices Show asic Symmetry lectrical Properties not

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

S.E. Sem. III [ETRX] Electronic Circuits and Design I

S.E. Sem. III [ETRX] Electronic Circuits and Design I S.E. Sem. [ETRX] Electronic ircuits and Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1(a) What happens when diode is operated at high frequency? [5] Ans.: Diode High Frequency Model : This

More information

ECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp

ECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp ECE 34: Design Issues for oltage Follower as Output Stage S&S Chapter 14, pp. 131133 Introduction The voltage follower provides a good buffer between a differential amplifier and a load in two ways: 1.

More information

INDIAN SPACE RESEARCH ORGANISATION. Recruitment Entrance Test for Scientist/Engineer SC 2017

INDIAN SPACE RESEARCH ORGANISATION. Recruitment Entrance Test for Scientist/Engineer SC 2017 1. The signal m (t) as shown is applied both to a phase modulator (with kp as the phase constant) and a frequency modulator with ( kf as the frequency constant) having the same carrier frequency. The ratio

More information

SWITCHED CAPACITOR AMPLIFIERS

SWITCHED CAPACITOR AMPLIFIERS SWITCHED CAPACITOR AMPLIFIERS AO 0V 4. AO 0V 4.2 i Q AO 0V 4.3 Q AO 0V 4.4 Q i AO 0V 4.5 AO 0V 4.6 i Q AO 0V 4.7 Q AO 0V 4.8 i Q AO 0V 4.9 Simple amplifier First approach: A 0 = infinite. C : V C = V s

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

ONE MARK QUESTIONS. 1. The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is

ONE MARK QUESTIONS. 1. The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is ELECTRONICS & COMMUNICATION ENGINEERING ONE MARK QUESTIONS. The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is (a.) R L C (b.) R L C (c.) R L C (d.) R LC

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

GATE Question Paper & Answer Keys

GATE Question Paper & Answer Keys Question Paper & Answer Keys Index 1 Question Paper Analysis 2 Question Paper & Answer keys : 080-617 66 222, info@thegateacademycom Copyright reserved Web:wwwthegateacademycom ANALSIS OF GATE 2010 Electrical

More information

1 P a g e.

1 P a g e. 1. Choose the most appropriate word from the options given below to complete the following sentence. Communication and interpersonal skills are important in their own ways. each B. both C. all either.

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2 Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:00-11:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,

More information

GATE : , Copyright reserved. Web:www.thegateacademy.com

GATE : , Copyright reserved. Web:www.thegateacademy.com Index. Question Paper Analysis 2. Question Paper & Answer keys : 080-67 66 222, info@thegateacademy.com Copyright reserved. Web:www.thegateacademy.com ANALYSIS OF GATE 206 Electrical Engineering CN Mathematics

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

The BJT Differential Amplifier. Basic Circuit. DC Solution

The BJT Differential Amplifier. Basic Circuit. DC Solution c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

(Refer Slide Time: 1:22)

(Refer Slide Time: 1:22) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 19 Module no 01 Problem Session 5 on Frequency Response of Small

More information

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier à OPERATIONAL AMPLIFIERS à OPERATIONAL AMPLIFIERS (Introduction and Properties) Phase relationships: Non-inverting input to output is 0 Inverting input to output is 180 OPERATIONAL AMPLIFIER ª Differential-input,

More information

EC Objective Paper I (Set - D)

EC Objective Paper I (Set - D) EC-Objective Paper-I ESE-5 www.gateforum.com EC Objective Paper I (Set - D). If a system produces frequencies in the output are not present in the input, then the system cannot be Minimum phase system

More information

Section 5.4 BJT Circuits at DC

Section 5.4 BJT Circuits at DC 12/3/2004 section 5_4 JT Circuits at DC 1/1 Section 5.4 JT Circuits at DC Reading Assignment: pp. 421-436 To analyze a JT circuit, we follow the same boring procedure as always: ASSUME, ENFORCE, ANALYZE

More information

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and Self-Heating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor

More information

Poynting Vector and Energy Flow W14D1

Poynting Vector and Energy Flow W14D1 Poynting Vector and Energy Flow W14D1 1 Announcements Week 14 Prepset due online Friday 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152 Sunday Tutoring 1-5 pm in 26-152 2 Outline Poynting

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Q. 1 Q. 5 carry one mark each.

Q. 1 Q. 5 carry one mark each. GATE 2019 General Aptitude (GA) Set-3 Q. 1 Q. 5 carry one mark each. Q.1 I am not sure if the bus that has been booked will be able to all the students. (A) sit (B) deteriorate (C) fill (D) accommodate

More information

ANALYSIS OF GATE 2017* Electrical Engineering

ANALYSIS OF GATE 2017* Electrical Engineering ANALYSS OF GATE 2017* Electrical Engineering Power Systems 10% General Aptitude 15% Engineering Mathematics 11% Network Theory 9% Signals & Systems 7% Electrical Machines 12% Control Systems 11% Power

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

Switching circuits: basics and switching speed

Switching circuits: basics and switching speed ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V

More information

CHAPTER 7 - CD COMPANION

CHAPTER 7 - CD COMPANION Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

More information

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3 urrent onvention HEM*3440 hemical nstrumentation Topic 3 udimentary Electronics ONENTON: Electrical current flows from a region of positive potential energy to a region of more negative (or less positive)

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything

More information

Bipolar junction transistors

Bipolar junction transistors Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma

More information

6.1 Introduction

6.1 Introduction 6. Introduction A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then.

More information

The Common-Emitter Amplifier

The Common-Emitter Amplifier c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The Common-Emitter Amplifier Basic Circuit Fig. shows the circuit diagram

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

GATE 2009 Electronics and Communication Engineering

GATE 2009 Electronics and Communication Engineering GATE 2009 Electronics and Communication Engineering Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + y =e (A) 1 (B) 2 (C) 3 (D) 4 is 2. The Fourier series of a

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS. 8 Electrical Engineering RIB-R T7 Session 08-9 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities: Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits I Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS FE eview ELECONICS # FUNDAMENALS Electric Charge 2 In an electric circuit there is a conservation of charge. he net electric charge is constant. here are positive and negative charges. Like charges repel

More information

Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling.

Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling. Whites, EE 322 Lecture 23 Page 1 of 13 Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling. Recall from the last lecture that the NorCal 40A uses a Class C power amplifier. From Fig. 10.3(b) the collector

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

To discuss this question paper visit Navigate to the Discussion Forum.

To discuss this question paper visit   Navigate to the Discussion Forum. GATE-2019 Full Length Test Civil Engineering Name:... Test ID: CE-FLT- 2019 Duration: 3 hours Maximum marks : 100 Please read the following instructions carefully General Instructions 1. Total duration

More information

Exercise The determinant of matrix A is 5 and the determinant of matrix B is 40. The determinant of matrix AB is.

Exercise The determinant of matrix A is 5 and the determinant of matrix B is 40. The determinant of matrix AB is. Exercise 1. The determinant of matrix A is 5 and the determinant of matrix B is 40. The determinant of matrix AB is.. Let X be a random variable which is uniformly chosen from the set of positive odd numbers

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

pickup from external sources unwanted feedback RF interference from system or elsewhere, power supply fluctuations ground currents

pickup from external sources unwanted feedback RF interference from system or elsewhere, power supply fluctuations ground currents Noise What is NOISE? A definition: Any unwanted signal obscuring signal to be observed two main origins EXTRINSIC NOISE examples... pickup from external sources unwanted feedback RF interference from system

More information

Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response. PART C: High Frequency Response Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information