Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Size: px
Start display at page:

Download "Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises"

Transcription

1 Page Microelectronic Circuit esign Fourth Edition - Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V V O mV or ) 5.V 3.95 V V O Page V LSB 5.0V 8 bits 5.00V 56bits ) 3.95 V.V 9.53 mv N 56bits 6.44bits 5.00V Page The dc component is V A 4V. The signal consists of the remaining portion of v A : v a 5 sin 000πt + 3 cos 000 πt) Volts. Page 3 ) 5sin 000πt + 5 o 90 o ) v o 5cos 000πt + 5 o V o 5 65 o V i o A v Page 5 [ ] A v R 5 R R 0kΩ R 50 kω 5 65o o o sin 000πt 65o) 08/09/0

2 Page 6 v s 0.5sin 000πt [ ) + sin 4000πt) +.5sin 6000πt) ] The three spectral component frequencies are f 000 Hz f 000 Hz f Hz a) The gain of the band - pass filter is zero at both f and f 3. At f, V o 0 V ) 0V, and v o 0.0sin 4000πt) volts. b) The gain of the low - pass filter is zero at both f and f 3. At f, V o 6 0.5V ) 3V, and v o 3.00sin 000πt) volts. Page 7 ) R 39kΩ + 0.) or 35. kω R 4.9 kω ) R 3.6kΩ + 0.0) or 3.56 kω R 3.64 kω 39kΩ kΩ 0.0 Page 9 V I P P nom mw R + R 54kΩ P max.x5 ) ) 0.95x54kΩ 5.3 mw P min 0.9x5 3. mw.05x54kω Page 33 R 0kΩ o C ) o C 9.0 kω R 0kΩ o C ) o C 0.6 kω 08/08/0

3 Page 47 n i Page 47 n i n i.3x0 30 K 3 cm 6 ) 300K.08x0 3 K 3 cm 6 ) 50K ) 3 exp ) 3 exp.08x0 3 K 3 cm 6 ) 35K cm 3 m L x cm 3 ) 3 exp CHAPTER 0.66eV 8.6x0 5 ev / K) 300K).7x03 cm 3.eV 8.6x0 5 ev / K) 50K) 4.34x0 39 cm 3 L 6.3x0 0 m.ev 8.6x0 5 ev / K) 35K) 4.0x00 cm 3 Page 49 v p µ p E 500 cm V s 0 V cm 5.00x0 3 cm s E V L x0 4 V cm 5.00x03 V cm v n µ n E 350 cm V s 000 V cm.35x0 6 cm s Page 49 a) From Fig..5: The drift velocity for Ge saturates at 6x0 6 cm / sec. At low fields the slope is constant. Choose E 00 V/cm µ n v n E 4.3x05 cm / s cm V / cm s b ) The velocity peaks at x0 7 cm / sec µ n v n E 8.5x05 cm / s 00V / cm 8500 cm s µ p v p E.x05 cm / s 00V / cm 00 cm s 3 08/09/0

4 Page 5 n i.08x ) 3 exp ρ σ.60x0 9.3x0 n i.08x x ) 5.40x04 / cm 6 n i.3x0 / cm 3 [ ) 350) +.3x0 ) 500) ] ) 3 exp ρ σ.60x x0 39 Page 55 n i.08x Ω cm. 8.6x0 5 50).88x0 77 / cm 6 n i 4.34x0 39 / cm 3 [ ) 6500) x0 39 ) 000) ].69x053 Ω cm ) 3 exp. 8.6x ) 5.40x04 / cm 6 holes p N A N 0 6 x0 5 8x0 5 n n i cm 3 p 5.40x04 8x0 5 Antimony Sb) is a Column - V element, so it is a donor impurity. p n i n 00 x0 holes x03 n > p n - type silicon cm 3 Page 56 Reading from the graph for N T 0 6 /cm 3, 30 cm /V-s and 405 cm /V-s. Reading from the graph for N T 0 7 /cm 3, 800 cm /V-s and 30 cm /V-s. 6.75x0 8 electrons cm 3 n N x0 6 electrons cm /08/0

5 Page 58 ) 00 σ x0 9 µ n n u n n 6.5x0 / cm 3 6.5x0 9 a) N x0 6 / cm 3 N A 0 / cm 3 N T x0 6 / cm 3 ) ρ σ 0.00 Ω cm 70 µ n cm /V s µ p cm /V s + x06 + x06.3x x0 6 b) N T N + N A x0 6 / cm 3 + 3x0 6 / cm 3 5x0 6 / cm 3 70 µ n cm /V s µ p cm /V s + 5x06 + 5x06.3x x0 6 Page 59 Boron B) is a Column - III element, so it is an acceptor impurity. holes p N A N 4x0 8 n n i cm 3 p 00 5electrons p - type material 8 4x0 cm 3 N T 4x08 and mobilities from Fig..8 : µ cm 3 n 50 cm /V s µ p 70 cm /V s ρ qµ p p 0.0 Ω cm.60x0 9 4x ) 70 ) Indium In) is a Column - III element, so it is an acceptor impurity. holes p N A N 7x0 9 n n i cm 3 p 00.43electrons p - type material 9 7x0 cm 3 N T 7x09 cm 3 and mobilities from Fig..8 : µ n 00 cm /V s µ p 50 cm /V s ρ σ.79 mω cm.60x0 9 7x0 9 ) 50) 5 08/09/0

6 Page 60 V T kt q.38x0 3 50) 4.3 mv V.60x0 9 T.38x ) 5.8 mv.60x0 9 ) V T.38x mV.60x0 9 n kt q µ cm n 5.8mV cm V s s dn j n q n dx.60x0 9 C 0 cm µm 30 A s cm 3 µm cm cm dp j p q p dx.60x0 9 C 4 cm µm 64 A s cm 3 µm cm cm p kt q µ cm p 5.8mV cm V s s 6 08/08/0

7 CHAPTER 3 Page 79 φ j V T ln N N A n i 0.05V ln x ) V w do ε s q + φ j.7 N A.60x0 9 x0 + 8 N ) ) 8.85x ).63x0 6 cm µm Page 80 E max ε s 0 x p qn A dx qn x A p E max.6x0 9 C 0 7 / cm 3 ε s E max ε s qn 0 ).3x0 5 cm) ) x0 4 F / cm ) x n 75 kv cm dx qn x n ε s For the values in Ex.3. : E max.05v kv x0 6 cm cm x p 0.063µm + x µm x 0 0 n 0.063µm + 00 x0 8 Page 83 ) n kt.38x T 300 q.60x K 5.6x0 4 µm Page 85 i 40x0 5 A exp µa i 40x0 5 A exp ma V 0.05V ) ln + 6x0 3 A V 40x0 5 A i 5x0 5 A exp fa i 5x0 5 A exp fa /09/0

8 Page 87 a) V BE V T ln + I 0.05V ln + 40x0 6 A V I S x0 5 A V BE V T ln + I 0.05V ln + 400x0 6 A 0.65 V I S x0 5 A b) V BE V T ln + I 0.058V ln + 40x0 6 A 0.6 V I S x0 5 A V BE V T ln + I 0.058V ln + 400x0 6 A 0.67 V I S x0 5 A ΔV BE 57.6 mv ΔV BE 59.4 mv Page 89 ln i ln i ) ln I S ) Assume i is constant, and E G E GO I S dv dt k q ln i kt di S I S q I S dt v d T V di S T I S Kn i KBT 3 exp E GO I S dt kt di S dt 3KBT exp E GO + KBT 3 exp E GO + E GO kt kt kt I S di S dt 3 T + E GO kt 3 T + qv GO kt 3 T + V GO V T T dv dt v d T V T I S di S dt v V 3V d GO T T Page 90 ) ) w d 0.3µm + 0V 0.979V µm E V + φ j max 0.979V w d 0.378x0 4 cm I S 0 fa + 0V 0.8V 36.7 fa 58 kv cm Page 93 ) C jo x0 4 F / cm 0.3x0 4 cm.5 pf C j 5V ) 4.64 pf 5V V 9.7 nf cm C j 0V ) 9.7 nf cm 0 cm).5x0 cm).5 pf C 0 5 A 0.05V 0 8 s 4.00 pf C 8x0 4 A 0.05V 0 8 s 30 pf C 5x0 A 0.05V 0 8 s 0.0 µf 8 08/08/0

9 Page 98 Two points on the load line : V 0, I 5V 5kΩ ma; I 0, V 5V The intersection of the two curves occurs at the Q- pt : 0.88 ma, 0.6 V ) Page I + V V V T ln + I I ln + I Page 0 Page 0 fzero@id) *id-0.05*log+id/e-3), 5e-4) ans 9.458e-004 I S fzero@id) *e-4)*exp40*vd)-)-vd), 0.5) ans Page 09 From the answer, the diodes are on,on,off. ) 0.6V 0V ) 0V - V I I + I B.5kΩ V B 0.6V 0V + V B 0 V B.87 V 0kΩ 0kΩ V ) V ) I.3 ma I 0kΩ 0kΩ I > 0, I > 0, V 3 < 0. These results are consistent with the assumptions. I S.3 ma V ).7 V Page R min 5kΩ kω.67 kω V 0 O 0V 5 5kΩ +kω 3.33 V V is off) V 5 V V Z O Z is conducting) Page V L 0V kω + V 5V L 0.kΩ + V L 5kΩ 0 V 6.5 V I 6.5V 5V L Z 0.kΩ P Z 5V.5mA ) +00Ω.5mA) 78. mw Line Regulation 0.kΩ mv kΩ + 5kΩ V.5mA Load Regulation 0.kΩ 5kΩ 98.0 Ω 9 08/09/0

10 Page 8 V dc V on V I dc 7.9V 0.5Ω 5.8 A V I dc r C T 5.8A 0.5F 60 s 0.57 V ΔT ω V r 0.57V 0.9 ms θ c 0π 0.9ms) 80o 8.9V π 9.7o π 60 ) V dc V on 0 3. V I dc 3.V Ω 6.57 A C I dc T 6.57A V r 0.F 60 s.0 F ΔT ω V r π 60 ) 0.V 0.36 ms 4.V Page 0 At 300K : V kt q ln + I.38x0 3 J / K 300K.60x0 9 C I S θ c 0π 0.36ms) 80o π 6.8o ) ) ln A V 0 5 A At 50 o C : V kt q ln + I I S.38x0 3 J / K 73K + 50K ln A.07 V.60x0 9 C 0 5 A Note : For V T 0.05V, V kt q ln + I 0.05V ln A 0.96 V 0 5 A Page 7 V rms V dc + V on I SC ωc π 60Hz ΔT ω V r I S 5+.3 V C I dc V r T ) 0.F) 6V ) 340 A 0.0 ) 5) π 60) 6 A 0.0 5V ) s 0.F,000 µf 60 T ms I P I dc ΔT A s ms ) 84 A 0 08/08/0

11 Page 53 K n ' µ n ε ox T ox 500 cm V s CHAPTER x0 4 F / cm) 69.x0 6 C 5x0 7 cm V s 69.µA V ' W µa 0µm K n K n µa L V µm V K µa 60µm n µa V 3µm V K n 50 µa 0µm 000 µa V 0.5µm V For 0V and V, < V TN and the transistor is off. Therefore I 0. - V TN V and V S 0. V Triode region operation ' W I K n L V V V S GS TN V S 5 µa 0µm V.3 µa V µm - V TN V and V S 0. V Triode region operation ' W I K n L V V V S GS TN V S 5 µa 0µm V 36.3 µa V µm K n ' 5 µa 00µm 50 µa V µm V Page 54 R on V TN + ' W K n L V TN ) K n R on V + 50 µa V 50 µa V ) 4.00 kω R on 000Ω) 3.00 V 50 µa V.00 kω 4 ) 08/09/0

12 Page 57 - V TN 5-4 V and V S 0 V Saturation region operation I K n V TN ) ma V ' W K n K n L W L ma 40µA 5 5 ) V 8.00 ma Assuming saturation region operation, W 5L 8.75 µm I K n V TN ) ma.5 ) V.3 ma V g m K n V TN ) ma )V.50 ms.5 V I Checking : g m.5ma V TN )V ).5.50 ms Page 58 - V TN 5-4 V and V S 0 V Saturation region operation I K n V TN ) + λv S ) ) + λv S ) I K n V TN ma 5 ) V V ma V 5 ) V [ )] 9.60 ma [ )] 8.00 ma - V TN 4-3 V and V S 5 V Saturation region operation I K n V TN ) + λv S ) 5 I K n V TN ) + λv S ) 5 Page 59 µa 4 ) V V V [ )] 8 µa [ )] 0 µa µa 5 ) V Assuming pinchoff region operation, I K n 0 V TN ) 50 V TN + I K n V + 00 µa) 50µA/V 4.00 V Assuming pinchoff region operation, I K n V TN ) 50 µa V +V ) 00 µa µa V [ V )] 5 µa 08/08/0

13 Page 6 ) ) V ).5 V V TN ).84 V V TN V TO + γ V SB + 0.6V 0.6V V TN a) is less than the threshold voltage, so the transistor is cut off and I 0. b) - V TN - V and V S 0.5 V Triode region operation I K n V TN V S V S ma V 375 µa V c) - V TN - V and V S V Saturation region operation I K n V TN ) + λv S ) 0.5 ma V [ )] 50 µa ) V Page 63 a ) is greater than the threshold voltage, so the transistor is cut off and I 0. b) - V TN - + V and V S 0.5 V Triode region operation I K n V TN V S V S 0.4 ma )V 50 µa V c) - V TN + V and V S V Saturation region operation I K n V TN ) + λv S ) 0.4 ma V + [ ] 08 µa ) V ) 3 08/09/0

14 Page 67 C GC 00 µf 5x0 6 m) 0.5x0 6 m) ff m Triode region : C G C GS C GC + C W 0.5 ff pf GSO m Saturation region : C GS 3 C + C W ff pf GC GSO m C G C GSO W 300 pf 5x0 6 m).50 ff m 5x0 6 m 5x0 6 m ).75 ff ).83 ff Page 69 KP K n 50U LAMBA λ VTO V TN PHI φ F 0.6 W W.5U L L 0.5U Page 70 µm Circuits/cm α 0.5µm 6 Power - elay Product α times improvement 3 64 Page 7 i * ε µ ox W /α n T ox /α L/α v V v S GS TN v S α i P * V i * V α i P * A * αp W /α) L/α) α P 3 A a) f T π V L cm /V s V 0 4 cm) V cm L V cm cm ) 7.96 GHz b) f T ) 0 V L 0 5 V ) α P 500cm /V s π 0.5x0 4 cm ) V 0 5 cm cm ) V ) 7 GHz 4 08/08/0

15 Page 7 a ) From the graph for 0.5 V, I 0 8 A b) From the graph for V TN 0.5 V, I 3x0 5 A c) I 0 9 transistors Page 76 ) 3x0-5 A/transistors) 3 µa Active area 0Λ Λ ) 0Λ 0 0.5µm).88 µm L Λ 0.50 µm W 0Λ.5 µm Gate area Λ 0Λ ) 0Λ 0 0.5µm) 0.33 µm Transistor area 0Λ + Λ + Λ) Λ + Λ + Λ N 04 µm) 3.50µm 8.6 x 06 transistors ) 4Λ 4 0.5µm) 3.50 µm Page 80 Assume saturation region operation and λ 0. Then I is indpendent of V S, and I 50 µa. ) 7.50 V. V S V TN, so our assumption was correct. ) V S V I R 0 50kΩ 50µA Q - Point 50.0 µa, 7.50 V V EQ 70kΩ 70kΩ + 750kΩ 0V.647 V R EQ 70kΩ 750kΩ Assume saturation region. A I 5x0 6 V.647 ) V 33.9 µa V S V I R 0 00kΩ 33.9µA) 6.6 V. V S V TN, so our assumption was correct does not change : 3.00 V I 30x0 6 Q - Point 33.9 µa, 6.6 V ) A V 3 ) V 60.0 µa ) 4.00 V. V S V TN, so our assumption was correct. ) V S V I R 0 00kΩ 60.0µA Q - Point 60.0 µa, 4.00 V 5 08/09/0

16 Page 8 does not change : 3.00 V I 5x0 6 V S V I R 0 00kΩ 8.µA ) Q - Point 8. µa, 7.9 V ) V S 0 5x A 3.5) V 8. µa V ) 7.9 V. V S V TN, so our assumption was correct. 3 ) + 0.0V S V S V 4.76 V I 5x0 6 ) V S V S ) [ )] 5.4 µa 3 ) Page 8 For I 0, V S 0 V. For V S 0, I 0V 66.7kΩ 50µA. The load line intersects the 3 - V curve at I 50 µa, V S 6.7 V. 6 08/08/0

17 Page 85 Upper group + V TN + V TN K n V TN K n ± K n V EQ K n Assume saturation region operation. I + K n V EQ V TN K n 0 V TN ± K n V TN + V TN V TN + V EQ V TN + K n K n V TN K n V TN + K n V EQ V TN K n + V EQ K n ) ) ) ) + 30µA) 39kΩ) 4 ) 30µA) 39kΩ) ) 5.8 V Saturation region is correct. Q - Point : 36.8 µa, 5.8 V ) V S 0 4kΩ 36.8µA Assume saturation region operation. I 5µA V S 0 4kΩ 6.7µA ) 36.8 µa ) 6.7 µa + 5µA) 39kΩ) 4.5) ) 39kΩ) ) 6.96 V Saturation region is correct. Q - Point : 6.7 µa, 6.96 V ) Assume saturation region operation. I 5µA V S 0 37kΩ 5.4µA ) 36.8 µa + 5µA) 6kΩ) 4 ) ) 6kΩ) ) 6.5 V Saturation region is correct. Q - Point : 5.4 µa, 6.5 V ) 7 08/09/0

18 Page 85 Lower group R V EQ MΩ V 0V 4 V Assume saturation region operation. R + R MΩ +.5MΩ ) ) + 5µA).8kΩ) 4 ) 5µA).8kΩ) ) 5.94 V Saturation region is correct. Q - Point : 99.5 µa, 5.94 V ) I + K n V EQ V TN K n V S kΩ 99.5µA ) 99.5 µa R V EQ.5MΩ V 0V 6 V Assume saturation region operation. R + R.5MΩ +MΩ I 5µA ) 99. µa ) kω) + 5µA) kω) 6 ) ) 6.03 V Saturation region is correct. Q - Point : 99. µa, 6.03 V ) V S 0 40kΩ 99.µA I Bias V EQ V R + R R + R V I Bias 0V µa 5 MΩ R V R R + R ) V EQ 5MΩ 4V R + R V 0V MΩ R 5MΩ R 3 MΩ R EQ R R. MΩ Page 87 ) I 5µA 6 000I V SB 000I V TN V SB Spreadsheet iteration yields I 83. µa. Page 83 [ ) +.83 ] V 0. SB Equation 4.55 becomes V SB V SB 6.065V SB V SB.63V..63V 0 4 A 6.3 kω 6 kω R )V 3.7kΩ 4 kω 0 4 A V TN ) 8 08/08/0

19 Page 89 Assume saturation region operation. ) 0 6 5x0 6 6x0 4 +) V GS V, +.76V ) 5.4 µa V S 0 37kΩ 5.4µA) ) I 5x Saturation region is correct. Q - Point : 5.4 µa, V [ ] 6.5 V Page 95 a ) V S 3 V, 3.5 ) +.5 V. The transistor is pinched off. I I SS V GS ma V 84 µa Pinchoff requires V S +.5 V 3.5V b) V S 6 V, 3.5) +.5 V. The transistor is pinched off. I I SS V GS ma V 50 µa Pinchoff requires V S +.5 V 3.5V c) V S 0.5 V, 3.5) +.5 V. The transistor is in the triode region. I I SS V S V S ma 3.5 Pinchoff requires V S +.5 V a) V S 0.5 V, 4 I I SS V S V S 0.mA b) V S 6 V, 4 I I SS V GS ) ) µa ) + V. The transistor is in the triode region. ) µa 4) ) +3 V. The transistor is pinched off. 0.mA V 3 µa 4V 9 08/09/0

20 Page 97 a ) V S 3 V, 3 4 V. The transistor is pinched off. I I SS V GS.5mA 3V 56 µa Pinchoff requires V S V 4V b) V S 6 V, 4) 3 V. The transistor is pinched off. I I SS V GS.5mA V.4 ma Pinchoff requires V S 3 V 4V c) V S 0.5 V, 4) V. The transistor is in the triode region. I I SS ) V S V S.5mA Pinchoff requires V S V ) 73 µa Page 98 BETA I SS BETA I SS.5mA ) 0.65 ma VTO V LAMBA λ 0.05 V - 5mA.5 ma VTO V LAMBA λ 0.0 V /08/0

21 Page 00 VTO 5 V BETA I SS 5mA - 0. ma LAMBA λ 0.0 V 5 ) V G V S I G R G I S 0 I I K n V TN ) K n V TN 0.4mA ) kω 5 ) V R GS S V TN 5 + V GS 5 I SS V GS Assuming pinchoff, I.9 ma and V S 9.9mA kω +kω 3.09 V, V S >, and pinchoff is correct Assuming pinchoff, I SS V GS.5 V I I SS V GS V S.5mA kω + kω a) V G I G R G 0nA 680kΩ 5mA.5 5 for I SS K n V TN and V TN V GS and the rest is identical. ) 3.7 V. 5x0 3 ) x0 3 ) +.5 ma 5 V GS ) 7.00 V. ) +.5 V, V S >, and pinchoff is correct. Q - Point :.5 ma, 7.00 V ) ) 6.80 mv. V G V S I G R G I SS V GS x0 3 ) 0 3 ) + 5 V GS The value of V G is insignificant with respect to the constant term of 5. So the answers are the same to 3 significant digits. b) V G I G R G µa 680kΩ V G V S I G R G I SS V GS.6 V I I SS V GS V S.54mA kω +kω ) V and now cannot be neglected x0 3 ) 0 3 ) + 5mA ma ) 7.38 V Q - Point :.54 ma, 7.38 V) 5 V GS /09/0

22 CHAPTER 5 Page 3 a) β F α F α F β F β 0.50 F b) α F β F β F α 00 F α 3 F Page 5 i C 0 5 A exp exp A exp ma i E 0 5 A exp exp A exp ma i B 0 5 A 00 exp A exp µa Page 7 i C 0 6 A exp exp A exp µa i E 0 6 A exp exp A exp µa i B 0 6 A 75 exp A exp µa i T 0 5 A exp exp 0.7 ma i T 0 6 A exp exp ma /08/0

23 Page 30 V BE V T ln I C V ln 0 4 A I S 0 6 A V V BE V T ln I C V ln 0 3 A I S 0 6 A V Page 3 npn :V BE > 0, V BC < 0 Forward Active Region pnp :V EB > 0, V CB > 0 Saturation Region Page 33 β F α F α F β α R R 0.5 α R V BE 0, V BC << 0 : I C I S A fa I E I S 0.00 fa β R I B I S 0 6 A fa β R V BE << 0, V BC << 0 : I C I S β R 3x0 6 A fa I E I S β F 0 6 A aa I I S B I S 0 6 A β F β R A fa / 3 Page 35 a ) The currents do not depend upon V CC as long as the collector - base junction is reverse biased by more than 0. V. Later when Early votlage V A is discussed, one should revisit this problem.) b) I E 00 µa I B I E β F + 00µA.96 µa I C β F I B 50I B 98.0 µa 5 V BE V T ln I C V ln 98.0µA I S 0 6 A V 3 08/09/0

24 Page 36 a ) The currents do not depend upon V CC as long as the collector - base junction is reverse biased by more than 0. V. Later when Early voltage V A is discussed, one should revisit this problem.) b) Forward - active region : I B 00 µa I E β F +)I B 5.0 ma I C β F I B 5.00 ma V BE V T ln I C V ln 5.00mA I S 0 6 A V Checking : V BC Forward - active region with V CB 0 requires V CC V BE or V CC V Page 38 a ) Resistor R is changed. 0.7V 9V ) I E 5.6kΩ V CE V C V E I C b) I E β + F.48 ma I B I E β F + I E 5 9. µa I β I 50I C F B B.45 ma ) 0.7) 3.47 V Q - Point :.45 ma, 3.47 V ) ) I C 5 β F 50 00µA 0µA R 0.7V 9V 0µA The nearest 5% value is 8 kω. Page V 9V I E ) 5.6kΩ 8.3V 8.4 kω 0µA.48 ma I B I E β F + I E µa I β I 50I C F B B.45 ma I E β + F I C 5 β F 50 I.0I V V ln I C C C BE T ln I S x0 5 I C +) V BE x0 6 )exp V BE 9 V BE V using a calculator solver 0.05 or spreadsheet. I C 5x0 6 exp µa V CE I C I S I SBJT α F x0 4 A fa ) 5.44 V 4 08/08/0

25 Page 4 Resistor R is changed : ) 5.6kΩ 0.7V 9V I C Page 44 ) ln V CESAT 0.05V ) ln V BESAT 0.05V ) ln V BCSAT 0.05V.48 ma I B I C β R + I C 0.74 ma I β I E R B )I B 0.74 ma ma 40µA ) ma 50 40µA ) 99.7 mv 0.mA + 0.5)mA 0 5 A mv mA ma A 0.67 mv V CESAT V BESAT V BCSAT 67.7mV Page 47 a) n kt q µ 0.05V n 500cm /V s b) I S qa n n i N AB W.6x0 9 C 50µm Page 50 V T.38x0 3 J / K.60x0 9 C f β f T β F ) 373K 300 MHz 5 ).5cm / s ).40 MHz ) 0 4 cm / µm).5cm / s) 0 0 / cm 6 ) 0 8 / cm 3 ) µm) 3.mV C I C V T τ F 0 8 A aa 0 A 0.03V 4x0 9 s).4 µf 5 08/09/0

26 Page 5 I C 0 5 Aexp ma β F I B.74mA 9.3 µa I C 0 5 Aexp ma β F 75 I B.45mA 9.3 µa Page 53 g m 40 V 0 4 A C 4.00mS 5ps Page 56 ) 4.00 ms g m 40 ) 40.0 ms V 0 3 A ) 0.00 pf C 40.0mS 5ps).00 pf ) V T kt q.38x mv IS.60x0 9 BF 80 VAF 70 V I C 350µA exp V BE exp fa Page 60 8kΩ V EQ 8kΩ + 36kΩ V 4.00 V R EQ 8kΩ 36kΩ kω V I B + 75+)6 kω.687 µa I 75I 0 µa I 76I C B E B 04 µa V CE 000I C 6000I E 4.9 V Q - point : 0 µa, 4.9 V V T ) 80kΩ V EQ 80kΩ + 360kΩ V 4.00 V R EQ 80kΩ 360kΩ 0 kω V I B )6 kω.470 µa I 75I 85 µa I 76I C B E B 88 µa ) V CE 000I C 6000I E 4.9 V Q - point : 85 µa, 4.93 V 6 08/08/0

27 Page 6 I I C 5 50I B 0I B 5 8kΩ V EQ 8kΩ + 36kΩ V 4.00 V R EQ 8kΩ 36kΩ kω V I B )6 kω 0.4 µa I 500I 05.6 µa I 76I C B E B 06.0 µa ) V CE 000I C 6000I E 4.8 V Q - point : 06 µa, 4.8 V Page 6 The voltages all remain the same, and the currents are reduced by a factor of 0. Hence all the resistors are just scaled up by a factor of 0. 0 kω. MΩ 8 kω 80 kω 6.8 kω 68 kω Page 64 V CE 0.7 V at the edge of saturation. V - R C kΩ 05µA V BESAT 4 kω 4µA V CESAT 56kΩ 60µA ) 6kΩ 84µA) V ) 6kΩ 84µA) V ) 0.7V R C 38.9 kω Page V I B ) kω 95.4 µa I 50I 4.77 ma I 5I C B E B 4.87 ma V CE I C + I B ) 4.3 V Q - point : 4.77 ma, 4.3 V ) Page 66 VBE V) IC A) V'BE V) E E E E /09/0

MICROELECTRONIC CIRCUIT DESIGN Second Edition

MICROELECTRONIC CIRCUIT DESIGN Second Edition MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

exp Compared to the values obtained in Example 2.1, we can see that the intrinsic carrier concentration in Ge at T = 300 K is 2.

exp Compared to the values obtained in Example 2.1, we can see that the intrinsic carrier concentration in Ge at T = 300 K is 2. .1 (a) k =8.617 10 5 ev/k n i (T = 300 K) = 1.66 10 15 (300 K) 3/ 66 ev exp (8.617 10 5 ev/k) (300 K) =.465 10 13 cm 3 n i (T = 600 K) = 1.66 10 15 (600 K) 3/ 66 ev exp (8.617 10 5 ev/k) (600 K) = 4.14

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006 Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Holes (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2

Holes (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2 Part V. (40 pts.) A diode is composed of an abrupt PN junction with N D = 10 16 /cm 3 and N A =10 17 /cm 3. The diode is very long so you can assume the ends are at x =positive and negative infinity. 1.

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

(e V BC/V T. α F I SE = α R I SC = I S (3)

(e V BC/V T. α F I SE = α R I SC = I S (3) Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

Lecture-4 Junction Diode Characteristics

Lecture-4 Junction Diode Characteristics 1 Lecture-4 Junction Diode Characteristics Part-II Q: Aluminum is alloyed into n-type Si sample (N D = 10 16 cm 3 ) forming an abrupt junction of circular cross-section, with an diameter of 0.02 in. Assume

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Electronics I - Diode models

Electronics I - Diode models Chapter 4 Electronics I - Diode models p n A K Fall 2017 talarico@gonzaga.edu 1 Effect of Temperature on I/V curves Source: Hu Figure 4.21 The IV curves of the silicon PN diode shift to lower voltages

More information

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the SEMICONDUCTORS Conductivity lies between conductors and insulators The flow of charge in a metal results from the movement of electrons Electros are negatively charged particles (q=1.60x10-19 C ) The outermost

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1 Lecture 010 4430 Review I (12/29/01) Page 0101 LTUR 010 4430 RVIW I (RAIN: HLM hap. 1) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught in 4430 2.) Insure

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

Lecture #11. Lecture

Lecture #11. Lecture Lecture #11 Semiconductor Diodes and Basic Circuits Outline/Learning Objectives: Simple circuits using ideal diode model, constant voltage drop model, and mathematical (exponential) model. Use of graphical

More information

CHAPTER 7 - CD COMPANION

CHAPTER 7 - CD COMPANION Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

More information

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 189 197 MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations S. EFTIMIE 1, ALEX. RUSU

More information

Class AB Output Stage

Class AB Output Stage Class AB Output Stage Class AB amplifier Operation Multisim Simulation - VTC Class AB amplifier biasing Widlar current source Multisim Simulation - Biasing 1 Class AB Operation v I V B (set by V B ) Basic

More information

Analog Circuit Design Discrete & Integrated

Analog Circuit Design Discrete & Integrated This document contains the Errata for the textbook Analog Circuit Design Discrete & Integrated The Hardcover Edition (shown below at the left and published by McGraw-Hill Education) was preceded by a Spiral-Bound

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancement-type N-MOS transistor 5.3 I-V characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS Name: CARLETON UNIVERSITY SELECTE FINAL EXAMINATION QUESTIONS URATION: 6 HOURS epartment Name & Course Number: ELEC 3908 Course Instructors: S. P. McGarry Authorized Memoranda: Non-programmable calculators

More information

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Mar 27 FEATURES Low current (max. 100 ma) Low voltage (max. 65 V). APPLICATIONS General purpose switching and amplification.

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

Chapter 2 - DC Biasing - BJTs

Chapter 2 - DC Biasing - BJTs Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata nd Ed. (0/9/07) Page Errata of CMOS Analog Circuit Design nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 8 Line 4 after figure 3.3, CISW CJSW 0 Line from bottom: F F 5 Replace

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

TTL AND-GATE MoHAT PROJECT EE 307, Spring 2006

TTL AND-GATE MoHAT PROJECT EE 307, Spring 2006 Introduction: TTL AND-GATE MoHAT PROJECT EE 307, Spring 2006 In fall quarter, 2005, Dr. Braun issued a two-fold challenge to his EE 307 students: to repair the AND-Gate shown in Figure P4.23 of Gopalan

More information

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Bipolar Junction Transistors Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of Precedent Class Explain the Operation of the Zener Diode Explain Applications

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

ECE 6412, Spring Final Exam Page 1

ECE 6412, Spring Final Exam Page 1 ECE 64, Spring 005 Final Exam Page FINAL EXAMINATION SOLUTIONS (Average score = 89/00) Problem (0 points This problem is required) A comparator consists of an amplifier cascaded with a latch as shown below.

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions

EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 pn Junction p-type semiconductor in

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. Q. 5 carry one mark each. Q. Consider a system of linear equations: x y 3z =, x 3y 4z =, and x 4y 6 z = k. The value of k for which the system has infinitely many solutions is. Q. A function 3 = is

More information

Determination of properties in semiconductor materials by applying Matlab

Determination of properties in semiconductor materials by applying Matlab Determination of properties in semiconductor materials by applying Matlab Carlos Figueroa. 1, Raúl Riera A. 2 1 Departamento de Ingeniería Industrial. Universidad de Sonora A.P. 5-088, Hermosillo, Sonora.

More information

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C PNP Silicon Digital Transistor Switching circuit, inverter, interface circuit, driver circuit Built in bias resistor (R = kω, R = kω ) For 6PIN packages: two (galvanic) internal isolated transistors with

More information