At point G V = = = = = = RB B B. IN RB f


 Luke Rich
 1 years ago
 Views:
Transcription
1 Common Emitter
2
3
4 At point G CE RC I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R IN R f
5 Gain in Constant Current Region I I I C F β ( IN F ) R I R OUT CC C C R OUT CC C β ( ) R F IN F d d OUT IN R R C β F
6 FET Inverter (Common Source  CS)
7
8
9 At Point C DS 55. RTH i D RTH 2. 0 R 500 TH 4 ma i k( ) D GS TR 2 GS id + k TR 4 ma + 2 1mA /
10 Output Gain in Constant Current Region I k( ) D IN TR 2 R I OUT TH TH D R k( ) 2 TH TH IN TR d d OUT IN 2R k( ) TH IN TR
11 Emitter Follower Input and output loops share load element x IN OUT x OUT Feedback
12
13 Emitter Follower I X R F X IN OUT I R ( I + I ) R ( 1+ β ) I R OUT E E C E F E Assuming Constant Current Operation I R IN OUT F I ( 1+ β ) I R R IN F E F [ R + ( 1+ β ) I R ] I F E IN F
14 I R IN F + ( 1+ β ) R F E R OUT ( )( 1+ β ) R R + ( 1+ β ) R << ( 1+ β ) R F E IN F F E F E IN CE > F > SAT OUT IN F Current Gain of Emitter Follower I I + I LOAD C I + β I F ( 1+ β ) I F I I IN
15 I I LOAD IN ( 1+ β ) F "Current Gain" R IN IN I R IN IN F + ( 1+ β ) R F E R IN IN R R IN F [ + ( 1+ β ) ] F E
16 FET Follower OUT I S R S I D R S GS IN  OUT IN  I D R S GS changes with I D (feedback) can use iterative graphical approach to solve
17 R DD IN TR S 15 8 k 05. ma / 2 1kΩ 2
18 Common ase (C) (Tracking Configuration)
19 I I I + I IN E C ( 1+ β ) I F I IIN ( 1+ β ) F β F IC β F I I ( 1+ β ) F IN I R OUT CC C L β F CC RL I ( 1 + β ) F IN
20 Common ase Transfer Function
21 Cascode Configuration
22 iasing Allows nonlinear elements to be treated as linear elements (under certain conditions) Different techniques for Discrete and Integrated designs Avoid nonlinearities of I characteristics by choosing a portion of the curve over which the device will operate
23
24
25
26
27
28
29
30
31
32
33 For JT of Fig R 1kΩ R 100 kω β CC C F F with A 0 ias levels I β I β C F F ( F ) ( ) R 100 kω 5mA I R 10 ( 5mA)(1k Ω) 5 CE CC C C Nonlinear Regions egin at 10 I 0 CE CC C (Cutoff) CE SAT CE SAT 0. 2 IC ma (Saturation) R C
34 Minimum A A MIN A MIN A MIN Maximum I A MAX IC ( SAT ) 9. 8 ma β ma + A MAX F R I MAX I R + A MAX MAX R F A MAX A MAX ( ma)(100 k)
35 Fixed oltages and Current iasing A simple way of eliminating a separate biasing source is to replace it with one of the power supply buses ias values are adjusted by selecting proper resistors in the input loop
36
37 10 R 1kΩ β 100 CC C F Find R that will result in bias value C 5 I R C CC C C I I C 5mA IC β F 0. 05mA I CC R F R CC I F kω
38 GS R A R + R DD 0. 5MΩ MΩ
39 Assume transistor in constant current region ( ) I k( ) 1mA / 4 2 D GS TR 4 ma I R DS DD D D 16 ( 4 ma)(2 kω) 8 i.e. > ( ) DS GS TR Constant Current Note: No current through gate of transistor
40 Parameter Independent iasing Previous biasing techniques are sensitive to device parameters such as β F, k and TR which are in turn sensitive to temperature and fabrication variances. One configuration called feedback biasing is virtually independent of device parameters
41
42
43 I R ( I + I ) R E I I + I I R ( I + I ) R 2 CC 2 C 2 1 E Input loop and output loop share the voltage drop (I 2 + I 1 )R E. This feedback mechanism is responsible for stabilizing bias levels against device parameters. Difficult to use graphical analysis to analyze circuit Example: Given 2, k 0.5 ma /, R 1MΩ, R 2 MΩ, R 1kΩ, R TR A D E 5kΩ 2 (A) Find I, () Find I if k is changed to 1 ma / 2 D D
44
45 Solution: R A R + R DD 2 MΩ MΩ + 2 MΩ ( ) Assume FET operates in the constant current region (must confirm later). I k( ) 2 D GS TR I k( I R ) 2 D D E TR
46 I D RE I D + 2RE ( TR ) TR 0 k + ( ) I 2 2 D ( 5kΩ) 25I 2 D 1 I D + 2( 5kΩ)( 8 2 ) mA / 62 I D + ( 8 2) 0 2 Applying quadratic formula I D 0. 93A I 155. ma D
47 First value gives 3.36, second value gives GS GS 0.24 (not valid cutoff) I ( R + R ) DS CC D D E Note: mA ( 1kΩ + 5kΩ) > DS GS TR Therefore constant current region 2 If k 10. ma / then 3, I 10. ma GS 100% change in k results in only a 7.5% change in I D D
48 JT Feedback ias
49 Problem: Find the vlaue of I C if βf varies from 50 to 200. F 0.7 CC R2 R + R kω kω + 20 kω 4 R R R kω
50 β F 50: I C 50( ) 6.67 kω + 51( 1kΩ) ma β F 200: I C 200( ) 6.67 kω + 201( 1kΩ) 318. ma β Changes by a factor of 4 I Changes by 11 % C
51 Same problem without R E 4 R kω I R F I R F kω ma
52 β 50: I β I 50( ma) 24. 5mA F C β 200: I β I 200( ma) 98 ma F C β Changes by a factor of 4 I Changes by a factor of 4 C Note: Current gain without R is greater (i.e. Sacrifice some gain for stability) E
53 iasing with ipolar Supplies The use of bipolar supplies can improve bias designs Facilitates DC  coupled input signals Allows outputs to be set to a bias level of zero In some cases can reduce the number of resistors in the bias circuit A bipolar supply bus is formed by positive and negative DC voltage sources each connected to a common ground
54
55 For a periodic AC waveform with no DC component the transistor input looks like a DC ground Applying KL F + I E RE + EE 0 For large βf I E ( EE F IC ) R E I R R C CC C C CC + ( EE + F ) R C E E F
Biasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationDEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:
UNIT VII IASING & STAILIZATION AMPLIFIE:  A circuit that increases the amplitude of given signal is an amplifier  Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationVI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
More informationChapter 10 Instructor Notes
G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has
More informationESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More informationDC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15Mar / 59
Contents Three States of Operation BJT DC Analysis FixedBias Circuit EmitterStabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationTransistor amplifiers: Biasing and Small Signal Model
Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT
More informationChapter7. FET Biasing
Chapter7. J configurations Fixed biasing Self biasing & Common Gate Voltage divider MOS configurations Depletiontype Enhancementtype JFET: Fixed Biasing Example 7.1: As shown in the figure, it is the
More informationSection 1: Common Emitter CE Amplifier Design
ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationThe CommonEmitter Amplifier
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The CommonEmitter Amplifier Basic Circuit Fig. shows the circuit diagram
More informationLecture 140 Simple Op Amps (2/11/02) Page 1401
Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and
More informationLecture 150 Simple BJT Op Amps (1/28/04) Page 1501
Lecture 50 Simple BJT Op Amps (/28/04) Page 50 LECTURE 50 SIMPLE BJT OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis
More informationCHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012
1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET DFET (Depletion MOS) MOSFET (Enhancement EFET) DC biasing Small signal
More informationChapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model commonemitter fixedbias voltagedivider bias emitterbias & emitterfollower commonbase configuration Transistor
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationfigure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationHalfcircuit incremental analysis techniques
6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor
More informationOperational amplifiers (Op amps)
Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.
More information4.4 The MOSFET as an Amp and Switch
10/31/004 section 4_4 The MSFET as an Amp and Switch blank 1/1 44 The MSFET as an Amp and Switch Reading Assignment: pp 7080 Now we know how an enhancement MSFET works! Q: A: 1 H: The MSFET as an Amp
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationCommon Drain Stage (Source Follower) Claudio Talarico, Gonzaga University
Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i  v o V DD v bs  v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs  C
More informationChapter 13 Bipolar Junction Transistors
Chapter 3 ipolar Junction Transistors Goal. ipolar Junction Transistor Operation in amplifier circuits. 2. Loadline Analysis & Nonlinear Distortion. 3. Largesignal equialent circuits to analyze JT circuits.
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationHightoLow Propagation Delay t PHL
HightoLow Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (nchannel) immediately switches from cutoff to saturation; the pchannel pullup switches from triode to
More informationSection 5.4 BJT Circuits at DC
12/3/2004 section 5_4 JT Circuits at DC 1/1 Section 5.4 JT Circuits at DC Reading Assignment: pp. 421436 To analyze a JT circuit, we follow the same boring procedure as always: ASSUME, ENFORCE, ANALYZE
More informationThe current source. The Active Current Source
V ref +  The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationEE 330 Lecture 31. Current Source Biasing Current Sources and Mirrors
EE 330 Lecture 31 urrent Source Biasing urrent Sources and Mirrors eview from Last Lecture Basic mplifier Gain Table DD DD DD DD in B E out in B E out E B BB in E out in B E E out in 2 D Q EE SS E/S /D
More informationActive Circuits: Life gets interesting
Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection
More information6.012 MICROELECTRONIC DEVICES AND CIRCUITS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 MICROELECTRONIC DEVICES AND CIRCUITS Answers to Exam 2 Spring 2008 Problem 1: Graded by Prof. Fonstad
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationForwardActive Terminal Currents
ForwardActive Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th  e W (why minus sign? is by def.
More informationLecture 23: Negative Resistance Osc, Differential Osc, and VCOs
EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationExact Analysis of a CommonSource MOSFET Amplifier
Exact Analysis of a CommonSource MOSFET Amplifier Consider the commonsource MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationEE 330 Lecture 16. MOSFET Modeling CMOS Process Flow
EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model
More informationEstimation of Circuit Component Values in Buck Converter using Efficiency Curve
ISPACS2017 Paper 2017 ID 21 Nov. 9 NQL5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36
More information7. DESIGN OF ACCOUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING
à 7. DESIGN OF ACCOUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING Figure. AC coupled common emitter amplifier circuit ü The DC Load Line V CC = I CQ + V CEQ + R E I EQ I EQ = I CQ + I BQ I
More informationDAC10* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017
* PRODUCT PAGE QUICK LINKS Last Content Update: 0/3/07 COMPARABLE PARTS View a parametric search of comparable parts. DOCUMENTATION Data Sheet : 0Bit CurrentOut DAC Data Sheet REFERENCE MATERIALS Solutions
More information6.2 INTRODUCTION TO OP AMPS
Introduction to Op Amps (7/17/00) Page 1 6.2 INTRODUCTION TO OP AMPS INTRODUCTION Objective The objective of this presentation is: 1.) Characterize the operational amplifier 2.) Illustrate the analysis
More informationECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1
Power Amplifiers; Part 1 Class A Device Limitations Large signal output match Define efficiency, poweradded efficiency Class A operating conditions Thermal resistance We have studied the design of smallsignal
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationECE342 Test 2 Solutions, Nov 4, :008:00pm, Closed Book (one page of notes allowed)
ECE342 Test 2 Solutions, Nov 4, 2008 6:008:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
More informationECE305: Fall 2017 MOS Capacitors and Transistors
ECE305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525530, 563599) Professor Peter Bermel Electrical and Computer Engineering Purdue
More informationGENERAL PURPOSE 6PIN PHOTOTRANSISTOR OPTOCOUPLERS
4N37 HA HA2 HA3 HA4 HA5 WHITE PACKAGE (M SUFFIX) SCHEMATIC 2 3 NC PIN. ANODE 2. CATHODE 3. NO CONNECTION 4. EMITTER 5. COLLECTOR. BASE 5 4 BLACK PACKAGE (NO M SUFFIX) DESCRIPTION The general purpose
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationElectronic Devices and Circuits Lecture 14  Linear Equivalent Circuits  Outline Announcements
6.012 Electronic Devices and Circuits Lecture 14 Linear Equivalent Circuits Outline Announcements Handout Lecture Outline and Summary Review Adding refinements to large signal models Charge stores: depletion
More informationACADAMIC CHAPTER OF SWECHA September 2010
Swecha Documents SFSAC/ ECE / IIII/LM/2010 /ver. 1.0 LABMANAUALS DEPARTMENT : ECE ELECTRONIC CIRCUITS ANALYSIS LABORATORY MANUAL ACADAMIC CHAPTER OF SWECHA September 2010 INDEX S.NO NAME OF THE EXPERIMENT
More informationDepartment of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions
Electrical Engineering 42/00 Summer 202 Instructor: Tony Dear Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley Final Exam Solutions. Diodes Have apacitance?!?!
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationAn Autonomous Nonvolatile Memory Latch
Radiant Technologies, Inc. 2835D Pan American Freeway NE Albuquerque, NM 87107 Tel: 5058428007 Fax: 5058420366 email: radiant@ferrodevices.com www.ferrodevices.com An Autonomous Nonvolatile Memory
More informationLECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.
ETUE 12 ossy onverters (Static State osses but Neglecting Switching osses) HW #2 Erickson hapter 3 Problems 6 & 7 A. General Effects Expected: (load) as (load) B. Switch and esistive osses hange M(D) Modified
More informationM2 EEA Systèmes Microélectroniques Polytech montpellier MEA 4. Analog Integrated Circuits Design
M EEA Systèmes Microélectroniques Polytech montpellier MEA 4 Analog ntegrated Circuits Design Chapter Basic and Advanced Current Sources Pascal Nouet / 0405 nouet@lirmm.fr http://www.lirmm.fr/~nouet/homepage/lecture_ressources.html
More informationReview  Differential Amplifier Basics Difference and commonmode signals: v ID
6.012 Microelectronic Devices and Circuits Lecture 20 DiffAmp Anal. I: Metrics, Max. Gain Outline Announcements Announcements D.P.: No Early effect in large signal analysis; just LECs. Lec. 21 foils useful;
More information1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012
/3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS V th " VGS vi  I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F
More informationEE105  Fall 2006 Microelectronic Devices and Circuits
EE105  Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM
More informationCHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS
CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationNonlinear Opamp Circuits
deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering IIT Bombay May 3, 2013 Overview of opamp operating regions Linear Region Occurs when the opamp output is stable i.e.
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationExperimental verification of the Chua s circuit designed with UGCs
Experimental verification of the Chua s circuit designed with UGCs C. SánchezLópez a), A. CastroHernández, and A. PérezTrejo Autonomous University of Tlaxcala Calzada Apizaquito S/N, Apizaco, Tlaxcala,
More informationIH5341, IH5352. Dual SPST, Quad SPST CMOS RF/Video Switches. Description. Features. Ordering Information. Applications. Pinouts.
SEMICONDUCTOR IH, IH2 December Features Description Dual SPST, Quad SPST CMOS RF/Video Switches R DS(ON) < Ω Switch Attenuation Varies Less Than db From DC to 00MHz "OFF" Isolation > 0dB Typical at 0MHz
More informationDC & Transient Responses
ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = > = When = > = In between, depends on transistor size and current
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationStudio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232242 Twostage opamp Analysis Strategy Recognize
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationTime Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
More informationUNIJUNCTION TRANSISTOR
UNIJUNCTION TRANSISTOR The UJT as the name implies, is characterized by a single pn junction. It exhibits negative resistance characteristic that makes it useful in oscillator circuits. The symbol for
More informationBD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS
, A, B, C Designed for Complementary Use with the BD26 Series W at 25 C Case Temperature 0 A Continuous Collector Current 5 A Peak Collector Current CustomerSpecified Selections Available B C E SOT9
More informationBasics of Network Theory (PartI)
Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationEE 435. Lecture 22. Offset Voltages
EE 435 Lecture Offset Voltages . Review from last lecture. Offset Voltage Definition: The inputreferred offset voltage is the differential dc input voltage that must be applied to obtain the desired output
More informationCCS050M12CM2 1.2kV, 50A Silicon Carbide SixPack (Three Phase) Module ZFET TM MOSFET and ZRec TM Diode
CCS5M2CM2.2kV, 5A Silicon Carbide SixPack (Three Phase) Module ZFET TM MOSFET and ZRec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turnoff Tail Current HighFrequency Operation
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationLecture 23  Frequency Resp onse of Amplifiers (I) CommonSource Amplifier. May 6, 2003
6.0 Microelectronic Devices and Circuits Spring 003 Lecture 3 Lecture 3 Frequency Resp onse of Amplifiers (I) CommonSource Amplifier May 6, 003 Contents:. Intro duction. Intrinsic frequency resp onse of
More informationFeatures / Advantages: Applications: Package: SOT227B (minibloc)
IX7R1N XPT CS 1 I C5 1 1.8 C(sat) Boost Chopper Part number IX7R1N Backside: isolated 3 1 Features / dvantages: pplications: Package: SOT7B (minibloc) asy paralleling due to the positive temperature coefficient
More informationFundamentals of Electrical Engineering, 1 st Edition. Giorgio Rizzoni
Fundamentals of Electrical Engineering, 1 st Edition. Giorgio Rizzoni Errata Corrige for first printing of 1 st Edition Revision 1 August 31 st, 2008 Rev. 1, August 31, 2008 1 Note from the Author Dear
More informationA LDO Regulator with Weighted Current Feedback Technique for 0.47nF10nF Capacitive Load
A LDO Regulator with Weighted Current Feedback Technique for 0.47nF10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline
More informationCHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY
15 CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY In this chapter TCAD and the various modules available in the TCAD simulator have been discussed. The simulation methodologies to extract
More informationErrata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg
Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.23, CISW CJSW 88 Line between Eqs. (3.32)
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 1  The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM
More information0 t < 0 1 t 1. u(t) =
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult
More informationMonolithic Microwave Integrated Circuits
SMA5111  Compound Semiconductors Lecture 10  MESFET IC Applications  Outline Left over items from Lect. 9 High frequency model and performance Processing technology Monolithic Microwave Integrated Circuits
More informationV = = A = ln V
Chapter Problem Solutions. a. b. c. γ + γ + BE + C + + γ + ( γ ( γ C γ + BE + BE γ BE and C γ ( γ + or C BE + C ma.5 kω.7 ( ma + 4. kω.5 kω C. (a ln C BE T S (i μ 6 A,.6 ln.588 μa C BE 4 (ii μ 6 A,.6 ln.5987
More information