Electronics II. Final Examination


 Gwenda Richards
 1 years ago
 Views:
Transcription
1 The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points Total 40 Was the exam fair? yes no
2 The University of Toledo f17fs_elct27.fm 2 Problem 1 11 points Given is the electric circuit model of a MOSFET single stage amplifier shown in Figure 1.1(a). R L 2.2kΩ g m 4mS R S 330 Ω V R v 1.5kΩ r o 20kΩ DD R 1 2MΩ R 2 2MΩ R 1 R v C c v v v i R 2 R v C c v D R v S R L v i R G G i i S i o R SL (a) (b) Figure 1.1 A single stage MOSFET amplifier circuit model. (a) The amplifier circuit model with connected signal source and resistive load. (b)amplifier s equivalent AC circuit model. Problem Statement For the given singlestage amplifier circuit model of Figure 1.1(a), demonstrate an ability to: 1. draw its nonlinear AC equivalent circuit, 2. prepare the linearized AC model of the given amplifier in which the transistor has been replaced by its linearized smallsignal equivalent circuit model, 3. determine the values of the given amplifier s external smallsignal parameters: voltage gain A v /v i, input resistance R i v i /i i, Hint #1 For full credit, give answers to all questions, prepare all required circuit diagrams, write all equations for which the space has been reserved, and show all symbolic and numerical expressions whose evaluation produces shown numerical results. Problem Solution An explicit demonstration of understanding the following solution steps is expected Construct the nonlinear AC equivalent circuit model for the circuit model in Figure 2.1(a) assuming that capacitances of all capacitors have infinite values. Show the constructed model in the space reserved for Figure 2.1(b), and show the necessary calculations in the space reserved for equations (11). R G R 12 R 1 R 2 R 1 R R1 R R S R L R SL R S R L RS R L MΩ 290Ω (11)
3 The University of Toledo f17fs_elct27.fm Construct the given amplifier s linearized AC model of in which the transistor has been replaced by its small signal equivalent model. Show the constructed model in the space reserved for Figure 1.2. R v i i G v gs v v v i R G v s g m v gs S r o i o R SL D Figure 1.2 Linearized AC model of the given amplifier circuit. Hint #2 For a meaningful process of performing the analysis in parts 3.3 and 3.4, the positive reference directions of these voltages v i,, and the current i i must be shown in the circuit of Figure 3.2. Failure to show these positive reference directions reduces the credit for these parts to Using the constructed linearized AC model, determine the value of the voltage gain, A v, of the given amplifier circuit. Show your calculation in the space reserved for equation (12). r From the circuit model in Figure 3.2, v i o g m g v i and gs r o R SL r o v s i o R SL ( g m v gs )R SL g m v r gs o R SL r o R SL r o R SL g m v gs R SLo with, R SLo r o R SL ro R SL Ω v gs v g v s v i g m v gs R SLo v i v gs 1 gm R SLo (12) i o g m r o r v v r o R gs g o i m SL r 1 g o R SL m R SLo g m v i 1 g m R SLo r o r o R SL i o R SL g m v i r o RSL 1 g m R SLo r o R SL g m R SLo v i 1 g m R SLo A v vi g m R SLo 1 g m R SLo
4 The University of Toledo f17fs_elct27.fm Using the constructed linearized AC model shown in Figure 1.2, determine the value of the input resistance, R i, of the given amplifier circuit. Show your calculation in the space reserved for equation (13). R i v i i i R G 1MΩ (13)
5 The University of Toledo f17fs_elct27.fm 5 Problem 2 14 points The electric circuit model of the basic current mirror is shown in Figure 2.1. V CC Reminder I REF I O R O I C I S e V T (1 VCE ) Q1 I C1 I B1 I B2 I C2 Q2 β F I C I B β FO (1 V CE ) V CC 0V Figure 2.1 Basic current mirror circuit model. Problem Statement Based on the shown current mirror s electrical circuit model of Figure 3.1, demonstrate an ability to derive: 1. The defining symbolic expression of the Mirror Ratio (MR) of a current mirror circuit; 2. the symbolic expression of the Mirror Ratio in the circuit of the basic current mirror of Figure 2.1. Hint #1 For full credit, give answers to all questions, prepare all required circuit diagrams, write all equations for which the space has been reserved, and show all symbolic and numerical expressions whose evaluation produces shown numerical results. Problem Solution For full credit, explicit demonstration of understanding the following solution steps is expected Prepare the defining symbolic expression of the quality metric Mirror Ratio (MR) of current mirror circuits. Show the prepared expression in the space reserved for equation (21). MR I O I REF (21) Indicate in the basic current mirror s circuit model of Figure 2.1 the positive reference directions of the base and collector currents of transistors Q 1 and Q 2.
6 The University of Toledo f17fs_elct27.fm Prepare the relation between the collectoremitter voltage V CE1 of the transistor Q 1.and the voltage indicated in the circuit model of Figure 3.1 Show the prepared expressions in the space reserved for equation (22) V CE1 1 2 (22) Based on the relations shown in Reminder section of Figure 2.1, prepare the expressions of the base and collector currents of transistors Q 1 and Q 2. Show the prepared expressions in the space reserved for equations (23). 1 I C1 I S e V T (1 VCE1 ) 2 I C2 I S e V T (1 VCE2 ) I B1 I C1 β F I S 1 e V T (1 V CE1 ) β FO (1 V CE1 ) V I BE S β e V T FO (23) I B2 V I BE S β e V T FO Prepare the KCL equation for the node of the collector terminal of transistor Q 1 and solve it for the current I REF ; then substitute into it the expressions for collector and base currents derived under (33), and simplify/rearrange the result. Show your work in the space reserved for equations (24). I REF I C1 I B1 I B2 I S (24) I e V T (1 VCE1 S ) 2I S β FO V T e I S e V T V CE1 (1 2 ) β FO
7 The University of Toledo f17fs_elct27.fm Using the so far prepared relations and expressions, prepare the expression of the Mirror Ratio for the Basic current mirror circuit of Figure 2.1. Show your calculation in the space reserved for equation (25). MR I O I REF I C2 I REF I C2 I C1 I B1 I B2 I S I e V S T e V T (1 V CE2 ) V CE1 (1 2 ) β FO V CE2 1 VA 1 2 β FO (25)
8 The University of Toledo f17fs_elct27.fm 8 Problem 3 6 points Given is the electric circuit model of the non inverting feedback amplifier shown in Figure 3.1(a). v i v d r d Av d ro R 2 A 80 db r d 25 kω r o 1 kω R 1 10 kω R 2 91 kω R 1 Figure 3.1 Electric circuit model of the nonirritating feedback amplifier circuit. Problem Statement On the example of the feedback amplifier circuit model of Figure 3.1, demonstrate an ability to: 1. determine the loop gain of a feedback amplifier circuit, 2. apply Blackman s theorem to determine impedance between two nodes in a feedback amplifier circuit; specifically in this case, the impedance Z i between the ground and the plus input terminal of the differential amplifier in the circuit model of Figure 3.1. Hint #1 For full credit, give answers to all questions, prepare all required circuit diagrams, write all equations for which the space has been reserved, and show all symbolic and numerical expressions whose evaluation produces shown numerical results. Problem Solution For full credit, explicit demonstration of understanding the following solution steps is expected In the space reserved for equation (31(a) show the mathematical expression of the Blackman s theorem, as applied to the input impedance of feedback amplifier s circuit model of Figure 3.1. Z i Z io F(0) F( ) Z io (a) 1 T SC F(0) R 1 T i R io OC F( ) R 1 T SC io 1 T OC (b) (31) 3.2 Observing that there are no reactive circuit elements in the circuit model of Figure 3.1, and realizing that therefore the circuit s input impedance Z i ought to be resistive, rewrite the expression (31)(a) into a resistive form expression and place this expression into the space reserved for equation (31)(b).
9 The University of Toledo f17fs_elct27.fm Prepare the auxiliary circuit model in which one could measure the passive resistance R io between the input terminals of the feedback amplifier circuit of Figure 3.1. Show the prepared model in the space reserved for Figure 3.2. A0 r d Av d ro Setting A0, passivates the amplifier circuit by removing its amplification action. R io R 2 R 1 Figure 3.2 Auxiliary circuit model in which one could measure the passive resistance between the input terminals of the feedback amplifier circuit model of Figure Determine the expression (in terms of the circuit parameters) for the resistance R io which is seen from the input terminals of the amplifier model in the circuit model of Figure 3.2, and calculate its value. Show the prepared expression in the space reserved for equation (32). R io r d R 1 (R 2 r o ) 2510 (911) kΩ (32) Prepare an auxiliary circuit model for determining the opencircuit loop gain T OC of the feedback amplifier circuit of Figure 3.1. Show the prepared model in the space reserved for Figure 3.3. v d r d Av d ro a b R 2 v a R a R v 1 b Figure 3.3 Auxiliary circuit model for determining the opencircuit loop gain T OC of the operational amplifier circuit of Figure 3.1.
10 The University of Toledo f17fs_elct27.fm Determine the expression (in terms of the circuit parameters) for the opencircuit loop gain T OC of the amplifier model in the circuit model of Figure 3.3, and calculate its value. Show the prepared expression in the space reserved for equations (33). In the circuit model of Figure 3.3, (a) no current flows through resistor r d, therefore v d 0V (b) as v d 0V, the voltage, as determined by the voltage divider formula is R 2 R 1 R a r o R 2 R 1 R a Av d 0V (c) as 0V, the voltage v b, as determined by the voltage divider formula is (33) v b R 1 R a R 2 R 1 R a 0V (d) which finally yields the opencircuit loop gain T OC value as, T OC v b v a 0V v a Prepare an auxiliary circuit model for determining the shortcircuit loop gain T SC of the feedback amplifier circuit of Figure 3.1. Show the prepared model in the space reserved for Figure 3.4. v d r d Av d ro v a a b v b R a R 1 R 2 Figure 3.4 Auxiliary circuit model for determining the shortcircuit loop gain T SC of the operational amplifier circuit of Figure 3.1.
11 The University of Toledo f17fs_elct27.fm Determine the expression (in terms of the circuit parameters) for the shortcircuit loop gain T SC of the amplifier model in the circuit model of Figure 3.4, and calculate its value. Show the prepared expression in the space reserved for equations (34). In the circuit model of Figure 3.4, (a) the voltage drop v d from the to input terminals of the diffamp is v d v a (b) the resistance R a through which node a is connected to ground is R a r d (c) by the voltage divider formula, voltage is determined as (34) Av d R 2 R 1 R a r o R 2 R 1 R a (d) by the voltage divider formula, voltage v b is determined as v b R 1 R a R 2 R 1 R a (e) combining relations (a) through (d), the shortcircuit loop gain T SC is determined as v b v T SC v b v d a v d v a R 1 R a R 2 R 1 R a R 2 R 1 R a r o R 2 R 1 R a A (1) A R 1 R a r o R 2 R 1 R a R A 1 R a ro R 2 R 1 R a Calculate the value of the input resistance of the feedback amplifier of Figure 3.1 by entering into formula (31)(b) the derived values for R io, T SO and T SC ;. Show your work in the space reserved for equations (35). R i R 1 T SC io T OC MΩ (35)
Electronics II. Midterm #1
The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem
More informationElectronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I su4ms_elct7.fm Section Electronics II Midterm # Problems Points. 8. 7 3. 5 Total 0 Was the exam fair? yes no The University of Toledo su4ms_elct7.fm Problem
More informationElectronics II. Midterm II
The University of Toledo su7ms_elct7.fm  Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm  Problem 7 points Equation ()
More informationElectronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm  StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm
More informationElectronics II. Final Examination
The University of Toledo f6fs_elct7.fm  Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm  Problem 5 points Given is
More informationElectronics II. Midterm II
The University of Toledo f4ms_elct7.fm  Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm  Problem 7 points Given in
More informationSOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION  SOLUTIONS (Average score = 78/100) R 2 = R 1 =
ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.
More informationElectronics II. Final Examination
f3fs_elct7.fm  The University of Toledo EECS:3400 Electronics I Section Student Name Electronics II Final Examination Problems Points.. 3 3. 5 Total 40 Was the exam fair? yes no Analog Electronics f3fs_elct7.fm
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationThe equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationMidterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
More informationElectric Circuits I FINAL EXAMINATION
EECS:300, Electric Circuits I s6fs_elci7.fm  Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm  Problem
More informationCE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202  Manuel Toledo August 20, 2012 INEL 4202  Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationElectric Circuits I Final Examination
EECS:300 Electric Circuits I ffs_elci.fm  Electric Circuits I Final Examination Problems Points. 4. 3. Total 38 Was the exam fair? yes no //3 EECS:300 Electric Circuits I ffs_elci.fm  Problem 4 points
More informationExact Analysis of a CommonSource MOSFET Amplifier
Exact Analysis of a CommonSource MOSFET Amplifier Consider the commonsource MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel
More informationElectric Circuits I. Midterm #1
The University of Toledo Section number s5ms_elci7.fm  Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm
More informationECE 523/421  Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42  Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering HighFrequency Model BJT & MOS B or G r x C f C or D r
More informationECE Analog Integrated Circuit Design  II P.E. Allen
Lecture 290 Feedback Analysis using Return Ratio (3/20/02) Page 2901 LECTURE 290 FEEDBACK CIRCUIT ANALYSIS USING RETURN RATIO (READING: GHLM 599613) Objective The objective of this presentation is: 1.)
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationElectric Circuits I Final Examination
The University of Toledo s8fs_elci7.fm  EECS:300 Electric Circuits I Electric Circuits I Final Examination Problems Points.. 3. Total 34 Was the exam fair? yes no The University of Toledo s8fs_elci7.fm
More informationElectric Circuits I. Midterm #1 Examination
EECS:2300, Electric Circuits I s8ms_elci7.fm  Electric Circuits I Midterm # Examination Problems Points. 4 2. 6 3. 5 Total 5 Was the exam fair? yes no EECS:2300, Electric Circuits I s8ms_elci7.fm  2
More information55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationChapter 10 AC Analysis Using Phasors
Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationLecture 090 Multiple Stage Frequency Response  I (1/17/02) Page 0901
Lecture 9 Multiple Stage Frequency esponse I (/7/2) Page 9 LECTUE 9 MULTIPLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 56527) Objective The objective of this presentation is:.) Develop methods for the frequency
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationDesigning Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Opamps in Negative Feedback
EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Opamps in Negative Feedback In the last note, we saw that can use an opamp as a comparator. However,
More informationNotes for course EE1.1 Circuit Analysis TOPIC 10 2PORT CIRCUITS
Objectives: Introduction Notes for course EE1.1 Circuit Analysis 45 Reexamination of 1port subcircuits Admittance parameters for port circuits TOPIC 1 PORT CIRCUITS Gain and port impedance from port
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationEE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
More informationECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OPAMP) Circuits
ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OPAMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform
More informationChapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cutoff frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance
More informationVI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTCAL ENGNEENG Subject
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationSection 1: Common Emitter CE Amplifier Design
ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open
More informationDESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OPAMP It consists of two stages: First
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
More informationAs light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR
LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationRIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIBR T7. Detailed Explanations. Rank Improvement Batch ANSWERS.
8 Electrical Engineering RIBR T7 Session 089 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)
More informationSinusoidal Steady State Analysis (AC Analysis) Part II
Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationLecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics Lena Peterson 20151013 Outline (1) Why is the CMOS inverter gain not infinite? Largesignal
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationE40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1
E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863866. Reader, Chapter 8 Noninverting Amp http://www.electronicstutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronicstutorials.ws/opamp/opamp_2.html
More informationTransistor amplifiers: Biasing and Small Signal Model
Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationAdvanced Current Mirrors and Opamps
Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 WideSwing Current Mirrors I bias I V I in out out = I in V W L bias 
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More informationLecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005
6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam
More informationProblem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationCommon Drain Stage (Source Follower) Claudio Talarico, Gonzaga University
Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i  v o V DD v bs  v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs  C
More informationTransistor Characteristics and A simple BJT Current Mirror
Transistor Characteristics and A simple BJT Current Mirror Currentoltage (I) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current
More informationEE214 Early Final Examination: Fall STANFORD UNIVERSITY Department of Electrical Engineering. SAMPLE FINAL EXAMINATION Fall Quarter, 2002
STANFORD UNIVERSITY Department of Electrical Engineering SAMPLE FINAL EXAMINATION Fall Quarter, 2002 EE214 8 December 2002 CLOSED BOOK; Two std. 8.5 x 11 sheets of notes permitted CAUTION: Useful information
More informationBipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationUniversity of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationEE100Su08 Lecture #9 (July 16 th 2008)
EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart
More informationFrequency Response Prof. Ali M. Niknejad Prof. Rikky Muller
EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
More informationELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems  C3 13/05/ DDC Storey 1
Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and
More informationDepartment of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions
Electrical Engineering 42/00 Summer 202 Instructor: Tony Dear Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley Final Exam Solutions. Diodes Have apacitance?!?!
More informationChapter 5 Solution P5.22, 3, 6 P5.33, 5, 8, 15 P5.43, 6, 8, 16 P5.52, 4, 6, 11 P5.62, 4, 9
Chapter 5 Solution P5.22, 3, 6 P5.33, 5, 8, 15 P5.43, 6, 8, 16 P5.52, 4, 6, 11 P5.62, 4, 9 P 5.22 Consider the circuit of Figure P 5.22. Find i a by simplifying the circuit (using source transformations)
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationTwoPort Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:
CHAPTER16 TwoPort Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for twoport networks. Convert
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationOnePort Networks. OnePort. Network
TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationD is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationModule 13: Network Analysis and Directional Couplers
Module 13: Network Analysis and Directional Couplers 13.2 Network theory two port networks, Sparameters, Zparameters, Yparameters The study of two port networks is important in the field of electrical
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More informationCapacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
More informationSimultaneous equations for circuit analysis
Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationThe current source. The Active Current Source
V ref +  The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy
More informationECEN 325 Electronics
ECEN 325 Electronics Introduction Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ohm s Law i R i R v 1 v v 2 v v 1 v 2 v = v 1 v 2 v = v 1 v 2 v = ir
More informationEECS 105: FALL 06 FINAL
University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 23:30 Wednesday December 13, 12:303:30pm EECS 105: FALL 06 FINAL NAME Last
More informationElectronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory
Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, AntiLogarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in
More informationE40M Review  Part 1
E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,
More informationDesign of Analog Integrated Circuits
Design of Analog Integrated Circuits Chapter 11: Introduction to Switched Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4
More information