Device Physics: The Bipolar Transistor


 Homer Robertson
 1 years ago
 Views:
Transcription
1 Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson 2. Week Fall
2 Introduction In analog design the transistors are not simply switches Secondorder effects impact their performance With each generation these effects become more significant The goal is to develop a circuit model for each device by formulating its operation to do this a good understanding of the underlying principles is necessary 2
3 Bipolar Junction Transistors emitter + p type base n type collector p type The bipolar junction transistor (BJT) is a semiconductor device containing three adjoining alternately doped regions The central region is known as base and the outer regions emitter and collector The emitter is much more doped than the collector 3
4 Bipolar Junction Transistors pnp bipolar junction transistor circuit symbol, voltage and current polarities keep the device in the active region 4
5 Bipolar Junction Transistors npn bipolar junction transistor circuit symbol, voltage and current polarities keep the device in the active region 5
6 Bipolar Junction Transistors The pnp transistor is basically two very closely spaced pnjunctions The base region is 1 µm thick, so the junctions are very closely spaced and interact with each other Thus the transistor is capable of current and voltage gain 6
7 Bipolar Junction Transistors The bipolar junction transistor has four regions of operation The most common region of operation is the active region EBjunctions are forward biased CBjunctions are reverse biased gives the largest signal gain almost all linear amplifiers operate in the active region The saturation region is when EBjunctions are forward biased CBjunctions are forward biased 7
8 Bipolar Junction Transistors The cutoff region EBjunctions are reverse biased CBjunctions are reverse biased represents an off state for the transistor as a switch The inverted region is when EBjunctions are reverse biased CBjunctions are forward biased 8
9 Bipolar Junction Transistors The four operating regions of the bipolar junction transistor 9
10 Bipolar Junction Transistors In circuit applications the transistor typically has a common terminal between input and output 10
11 Bipolar Junction Transistors This gives three amplifier types common base (CB) common emitter (CE) common collector (CC) (emitter follower) 11
12 Bipolar Junction Transistors Common emitter is the most popular The common emitter amplifier has output variables v EC and i C input variables v EB and i B if two of the voltages (or currents) are known the third is also known (Kirchhoff s laws) 12
13 Bipolar Junction Transistors The current components within the transistor The holes injected from the emitter to base are I Ep I E = I Ep +I En 13
14 Bipolar Junction Transistors The holes injected from the emitter that reach the collector junction are I Cp The current due to thermally generated electrons near the junction are I Cn I C = I Cp +I Cn I B = I E I C = I B1 +I B2 I B3 14
15 Bipolar Junction Transistors The base transport factor is defined as the ratio of the hole current diffusing into the collector to the hole current injected at the EB junction α T = I Cp I Ep It is preferred that α T is unity, but due to recombination in base α T is slightly less than unity The emitter injection efficiency γ = I Ep I E = I Ep I En +I Ep and measures the injected hole current compared to the total emitter current 15
16 Bipolar Junction Transistors As the emitter is more heavily doped γ 1 and I En 0 The ratio I C /I E in the active region is defined as the dc alpha α dc = I C I E = I Cp +I Cn I Ep +I En If the EB junction is forward biased I Cp I Cn and α dc = I Cp I Ep +I En which can be written as α dc = I [ ] [ ] Cp 1 I Ep = α T I Ep 1+I En /I Ep I Ep +I En or α dc = γα T 16
17 Bipolar Junction Transistors Beta is defined as or β dc = I C I B = I C I E I C β dc = I C/I E 1 I C /I E = α dc 1 α dc Note that as α dc 1 then β dc 17
18 Bipolar Junction Transistors The emitter current crossing the EB depletion region is evaluated as two minority carrier diffusion currents I E = I Ep (0)+I En (0 ) or I E = qad B d p B dx d n E qad E x=0 18 dx x =0
19 Bipolar Junction Transistors The collector current crossing the CB junction is evaluated as I C = I Cp (W)+I Cn (0 ) or I C = qad B d p B dx d n C + qad C x=w dx 19 x =0
20 Bipolar Junction Transistors For holes in the base region or D B d 2 p B (x) dx 2 d 2 p B (x) dx 2 = p B(x) τ B = p B(x) L 2 B where L B = D B τ B is the minority carrier diffusion length The solution is p B (x) = C 1 exp(x/l B )+C 2 exp( x/l B ) Similar equations can be found for n E (x ) and n C (x ) 20
21 Bipolar Junction Transistors The junction voltage V EB and V CE determine the minority carrier concentrations at the edges of the depletion region give the boundary conditions 21
22 Bipolar Junction Transistors If there is no recombination of holes in the base τ B = then which has solution of the form d 2 p B (x) dx 2 = 0 p B (x) = C 1 x+c 2 The two boundary conditions yield p B (0) = p B0 (exp(qv EB /kt) 1) = C 1 0+C 2 p B (W) = p B0 (exp(qv CB /kt) 1) = C 1 W +C 2 [ ] pb (0) p B (W) p B (x) = p B (0) x W 22
23 Bipolar Junction Transistors Thus the slope of p B (x) is [ ] pb (0) p B (W) W 23
24 Bipolar Junction Transistors Similarly n E (x ) = C 1 exp( x /L E )+C 2 exp(x /L E ) and with the boundary conditions n E (x ) = n E0 (exp(qv EB /kt) 1)exp( x /L E ) Thus the electron current is I En (0 ) = qad E d n E (x ) dx x =0 = qad E L E n E0 (exp(qv EB /kt) 1) 24
25 Bipolar Junction Transistors Simlarly the hole current is I Ep (0) = qad B d p B (x) dx which gives = qad E x=0 W [ p B(0) p B (W)] I Ep (0) = qad B W p B0[(exp(qV EB /kt) 1) (exp(qv CB /kt) 1)] The total emitter current is the sum of the hole and electron currents [ DE n E0 I E = qa + D ] Bp B0 (exp(qv EB /kt) 1) W L E qa D Bp B0 W (exp(qv CB/kT) 1) 25
26 Bipolar Junction Transistors The total collector current is the sum of the hole and electron currents [ DC n C0 I C = qa + D ] Bp B0 (exp(qv CB /kt) 1) W L C The base current is then +qa D Bp B0 W (exp(qv EB/kT) 1) I B = qa D En E0 L E (exp(qv EB /kt) 1)+qA D Cn C0 L C (exp(qv CB /kt) 1) 26
27 Bipolar Junction Transistors Ebers Moll The currents are now given different names and I F = I F0 (exp(qv EB /kt) 1) [ DE n E0 = qa + D ] Bp B0 (exp(qv EB /kt) 1) L E W }{{} I F0 α R I R = α R I R0 (exp(qv CB /kt) 1) = qa D Bp B0 W (exp(qv CB/kT) 1) 27
28 Bipolar Junction Transistors Ebers Moll The emitter current can be written as I E = I F α R I R Similarly the collector current can be split up into and I R = I R0 (exp(qv CB /kt) 1) [ DC n C0 = qa + D ] Bp B0 (exp(qv CB /kt) 1) L C W }{{} I R0 α F I F = α F I F0 (exp(qv EB /kt) 1) = qa D Bp B0 W (exp(qv EB/kT) 1) 28
29 Bipolar Junction Transistors Ebers Moll The emitter current can be written as I E = I F α R I R The collector current is then written as With I C = α F I F I R I B = I E I C = (1 α F )I F +(1 α R )I R These equations are known as the Ebers  Moll equations for an ideal pnp bipolar junction transistor 29
30 Bipolar Junction Transistors Ebers Moll The Ebers  Moll circuit for an ideal pnp bipolar junction transistor The complete set of inputoutput I V characteristics can be calculated from these equations 30
31 Bipolar Junction Transistors Ebers Moll Note that α F I F0 = α R I R0 = I S If β F = α F 1 α F and β R = α R 1 α R then only three numbers are necessary for the EbersMoll equations to be completely specified, β F, β R, and I S (or α F, α R, and I S ) and all other parameters can be calculated The direct connection between the doping densities, base width, lifetime, etc. and the Ebers  Moll equations makes them particulary useful in integrated circuit analysis 31
32 BJT  Smallsignal models Analog circuits are often operated with signal levels that are small compared to the bias voltages and currents Small signal models are then derived to calculate the circuit gain and terminal impedances We recall I C = I S exp V BE V T The transconductance is defined as g m = di C dv BE = di Sexp(V BE /V T ) dv BE Note that g m = 38 ms for I C = 1 ma at 25 C. = I S V BE exp V BE V T = I C V BE 32
33 BJT  Smallsignal models A change in the baseemitter voltage V BE causes a change in the minority carrier charge in the base Q e 33
34 BJT  Smallsignal models The minority carriers are supplied by the base lead so the device has input capacitance (npn) where C b = Q h V BE = τ F g m = τ F I C V T τ F = W2 B 2D n is the base transit time in the forward direction Typical values are τ F = ps for npn τ F = 1 40 ps for pnp 34
35 BJT  Smallsignal models In the forward active region the base current is related to the collector current and or I B = d di C β 0 = I C I B = I B = I C β F ( IC [ d β F di C ) I C ( )] 1 IC where β 0 is the small signal current gain of the transistor β F 35
36 BJT  Smallsignal models Typical values of β 0 are close to those of β F If β F is constant then β F = β 0 A single value of β is often assumed for a transistor and then used in both ac and dc calculations 36
37 BJT  Smallsignal models Smallsignal input inpedance of the device r π = V BE I B = V BE I C β 0 = β 0 g m The smallsignal input shunt resistance for a bipolar transistor depends on the current gain and is inversly proportional to I C Small changes V CE in V CE lead to changes I C in I C I C = I C V CE V CE or V CE = V A = r 0 I C I C where V A is the Early voltage 37
38 BJT  Smallsignal models r 0 is the smallsignal output resistance of the transistor r 0 = 1 g m V A V T The largesignal characteristics of the transistor when the Early effect is included is ( )( VBE I C = I S exp 1+ V ) CE V T V T 38
39 BJT  Smallsignal models Note that r 0 is inversly proportional to I C and thus r 0 can be related to g m r 0 = 1 where ηg m η = kt qv A So if V A = 100 V then η = at 25 C 39
40 BJT  Smallsignal models Combination of the above smallsignal elements yields the smallsignal model often referred to as the hybridπ model This is the basic model that arises directly from essential processes in the device 40
41 BJT  Smallsignal models Technological limitations in the fabrication of a transistor give rise to a number of parasitic elements that have to be taken into account as well 41
42 BJT  Smallsignal models An increase V CE in V CE leads to a decrease I B in I B modelled by Typically I B1 < 0.1I B so r µ = V CE I B1 = V CE I C I C I B1 = r 0 I C I B1 r µ 2β 0 r 0 5β 0 r 0 All pn junctions have voltage dependent capacitance C je is for the baseemitter junction C µ is for the basecollector junction C cs is for the collectorsubstrate junction 42
43 BJT  Smallsignal models The basecollector junction capacitance C µ = C µ0 (1 Vψ0 ) n where V is forward bias and n Furthermore there are resistive parasitics r b is series resistance in base r c is series resistance in collector r ex is series resistance in emitter The capacitance C π contains the basecharging capacitance C b and the emitterbase depletion layer capacitance C je C π = C b +C je 43
44 BJT  Frequency Response The addition of the resistive and capacitive parasitics to the basic smallsignal circuit gives the complete smallsignal equivalent circuit = Example
45 BJT  Frequency Response The parasitic circuit elements influence the highfrequency gain of the transistor The capability of a transistor to handle high frequency is specified by the frequency where the magnitude of the shorcircuit sommonemitter gain falls to unity This frequency is the transition frequency f T To determine f T we neglect r ex and r µ and redraw the complete small signal equivalent circuit If r c is assumed small then r o and C cs have no influence 45
46 BJT  Frequency Response Then the small signal voltage v 1 is v 1 = r π 1+r π (C π +C µ )s i i 46
47 BJT  Frequency Response If the current fed forward through C µ is neglected we can write and thus i o i o g m v 1 g m r π 1+r π (C π +C µ )s i i and the high frequency current gain i o i i (jω) β 0 1+ β 0(C π +C µ ) g m jω = β(jω) At high frequencies the imagniary part of the denominator dominates and the equation simplifies to β(jω) g m jω(c π +C µ ) 47
48 BJT  Frequency Response When the gain is unity β(jω) = 1 we find and ω = ω T = f T = 1 2π g m C π +C µ g m C π +C µ 48
49 BJT  Frequency Response The frequency response of a bipolar junction transistor β(jω) 49
50 BJT  Frequency Response The frequency ω β is defined as the frequency where β(jω) = β 0 2 or has fallen 3 db down from the low frequency value That is ω β = 1 β 0 50 g m C π +C µ
51 BJT  Frequency Response A time constant τ T is associated with ω T or = Example 4.2 τ T = 1 ω T τ T = C π +C µ g m = C je +C b +C µ g m = τ F + C je +C µ g m 51
52 Further reading This discussion is based on sections 1.1, 1.4, and 2.6 in Neudeck (1983). It is worth looking at the original paper by Ebers and Moll (1954). A detailed discussion on the smallsignal models and frequency response is found in sections 1.3 and 1.4 of Gray et al. (2001). References Ebers, J. J. and J. L. Moll (1954). Largesignal behavior of junction transistors. Proceedings of the IRE 42(12), Gray, P. R., P. J. Hurst, S. H. Lewis, and R. G. Meyer (2001). Analysis and Design of Analog Integrated Circuits (4 ed.). New York: John Wiley & Sons. Neudeck, G. W. (1983). The Bipolar Junction Transistor. Reading, Massachusets: AddisonWesley. 52
figure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
More informationEE105  Fall 2006 Microelectronic Devices and Circuits
EE105  Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:308pm in Sibley Auditorium Covering everything
More informationCLASS 3&4. BJT currents, parameters and circuit configurations
CLASS 3&4 BJT currents, parameters and circuit configurations I E =I Ep +I En I C =I Cp +I Cn I B =I BB +I En I Cn I BB =I Ep I Cp I E = I B + I C I En = current produced by the electrons injected from
More informationDigital Integrated CircuitDesign
Digital Integrated CircuitDesign Lecture 5a Bipolar Transistor Dep. Region Neutral Base n(0) b B C n b0 P C0 P e0 P C xn 0 xp 0 x n(w) b W B Adib Abrishamifar EE Department IUST Contents Bipolar Transistor
More informationELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models
LC 3908, Physical lectronics, Lecture 17 Bipolar Transistor njection Models Lecture Outline Last lecture looked at qualitative operation of the BJT, now want to develop a quantitative model to predict
More informationLecture 35  Bipolar Junction Transistor (cont.) November 27, Currentvoltage characteristics of ideal BJT (cont.)
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2002 Lecture 351 Lecture 35  Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Currentvoltage characteristics of ideal BJT (cont.)
More informationForwardActive Terminal Currents
ForwardActive Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th  e W (why minus sign? is by def.
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling
ELEC 3908, Physical Electronics, Lecture 19 BJT Base Resistance and Small Signal Modelling Lecture Outline Lecture 17 derived static (dc) injection model to predict dc currents from terminal voltages This
More informationInstitute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:0011:00 P2
Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:0011:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,
More informationMemories Bipolar Transistors
Technische Universität Graz nstitute of Solid State Physics Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Exams February 5 March 7 April 18 June 27 Exam Four
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More information13. Bipolar transistors
Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector
More informationChargeStorage Elements: BaseCharging Capacitance C b
ChargeStorage Elements: BaseCharging Capacitance C b * Minority electrons are stored in the base  this charge q NB is a function of the baseemitter voltage * base is still neutral... majority carriers
More informationLecture 17  The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 171 Lecture 17  The Bipolar Junction Transistor (I) Contents: Forward Active Regime April 10, 2003 1. BJT: structure and basic operation
More informationECE305: Spring 2018 Final Exam Review
C305: Spring 2018 Final xam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapters 10 and 11 (pp. 371385, 389403) Professor Peter Bermel lectrical and Computer ngineering Purdue University,
More informationElectronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Threeterminal device whose voltagecurrent relationship is controlled by a third voltage
More informationLecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline
Lecture 17 The Bipolar Junction Transistor (II) Regimes of Operation Outline Regimes of operation Largesignal equivalent circuit model Output characteristics Reading Assignment: Howe and Sodini; Chapter
More informationRecitation 17: BJTBasic Operation in FAR
Recitation 17: BJTBasic Operation in FAR BJT stands for Bipolar Junction Transistor 1. Can be thought of as two pn junctions back to back, you can have pnp or npn. In analogy to MOSFET small current
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationLecture 17 The Bipolar Junction Transistor (I) Forward Active Regime
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I V characteristics in forward active regime Reading Assignment:
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationJunction Bipolar Transistor. Characteristics Models Datasheet
Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,
More informationThe Devices. Jan M. Rabaey
The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models
More informationBJT  Mode of Operations
JT  Mode of Operations JTs can be modeled by two backtoback diodes. N+ P N N+ JTs are operated in four modes. HO #6: LN 251  JT M Models Page 1 1) Forward active / normal junction forward biased junction
More informationLecture 19  pn Junction (cont.) October 18, Ideal pn junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2002 Lecture 191 Lecture 19  pn Junction (cont.) October 18, 2002 Contents: 1. Ideal pn junction out of equilibrium (cont.) 2. pn junction diode:
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More information12. Memories / Bipolar transistors
Technische Universität Graz Institute of Solid State Physics 12. Memories / Bipolar transistors Jan. 9, 2019 Technische Universität Graz Institute of Solid State Physics Exams January 31 March 8 May 17
More informationECE342 Test 2 Solutions, Nov 4, :008:00pm, Closed Book (one page of notes allowed)
ECE342 Test 2 Solutions, Nov 4, 2008 6:008:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationBipolar junction transistor operation and modeling
6.01  Electronic Devices and Circuits Lecture 8  Bipolar Junction Transistor Basics  Outline Announcements Handout  Lecture Outline and Summary; Old eam 1's on Stellar First Hour Eam  Oct. 8, 7:309:30
More informationELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and SelfHeating
ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and SelfHeating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationElectronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE
Electronic Circuits Bipolar Junction Transistors Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of Precedent Class Explain the Operation of the Zener Diode Explain Applications
More information(e V BC/V T. α F I SE = α R I SC = I S (3)
Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also
More informationIntroduction to Transistors. Semiconductors Diodes Transistors
Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationI. Frequency Response of Voltage Amplifiers
I. Frequency Response of Voltage Amplifiers A. CommonEmitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o >, r oc >, R L > Find V BIAS such that I C
More informationLecture 27: Introduction to Bipolar Transistors
NCN www.nanohub.org ECE606: Solid State Devices Lecture 27: Introduction to ipolar Transistors Muhammad Ashraful Alam alam@purdue.edu Alam ECE 606 S09 1 ackground E C E C ase! Point contact Germanium transistor
More informationECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017
NAME: PUID: ECE 305 Fall 017 Final Exam (Exam 5) Wednesday, December 13, 017 This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy,
More informationR. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6
R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationIntroduction to Power Semiconductor Devices
ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings
More informationLecture 23: Negative Resistance Osc, Differential Osc, and VCOs
EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,
More informationWhereas the diode was a 1junction device, the transistor contains two junctions. This leads to two possibilities:
Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: ntype (favor e), ptype (favor holes) for conduction Whereas the diode was a junction
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationRegional Approach Methods for SiGe HBT compact modeling
Regional Approach Methods for SiGe HBT compact modeling M. Schroter 1),2) and H. Tran 2) 1) ECE Dept., University of California San Diego, La Jolla, CA, USA 2) Chair for Electron Devices and Integr. Circuits,
More information6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
More informationStudent Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS
Name: CARLETON UNIVERSITY SELECTE FINAL EXAMINATION QUESTIONS URATION: 6 HOURS epartment Name & Course Number: ELEC 3908 Course Instructors: S. P. McGarry Authorized Memoranda: Nonprogrammable calculators
More information6.012 Electronic Devices and Circuits
Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3
More informationGEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of
More informationAbout Modeling the Reverse Early Effect in HICUM Level 0
About Modeling the Reverse Early Effect in HICUM Level 0 6 th European HICUM Workshop, June 1213, 2006, Heilbronn Didier CELI, STMicroelectronics 1/21 D. Céli Purpose According to the bipolar models,
More informationObjective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction, and the transistors.
 13/4/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction,
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
More informationObjective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction, and the transistors.
 11/15/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the PN junction,
More informationDC and AC modeling of minority carriers currents in ICs substrate
DC and AC modeling of minority carriers currents in ICs substrate Camillo Stefanucci, Pietro Buccella, Maher Kayal and JeanMichel Sallese Swiss Federal Institute of Technology Lausanne, Switzerland MOSAK
More informationBipolar Transistor WS 2011
Institut für Integrierte Systeme Integrated Systems Laboratory Bipolar Transistor WS 2011 1 Introduction In this exercise we want to simulate the IV characteristics of a bipolar transistor and draw the
More information55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
More informationEE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR
EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationChapter 9 Bipolar Junction Transistor
hapter 9 ipolar Junction Transistor hapter 9  JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a threeterminal
More informationFigure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors
Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationA Simplified, Analytical, OneDimensional Model for Saturation Operation of the Bipolar Transistor
82 A Simplified, Analytical, OneDimensional Model for Saturation Operation of the Bipolar Transistor G.T. Wright and P.P. Frangos Electronic and Electrical Engineering Department, University of Birmingham,
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationGeneral Purpose Transistors
General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationBiasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION
4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration
More informationSOLUTIONS: ECE 606 Homework Week 10 Mark Lundstrom. Purdue University. (Revised 3/29/13)
ECE 66 SOLUTIOS: ECE 66 Homework Week 1 Mark Lundstrom (Revised 3/9/13) 1) In a forward biased P junction under low injection conditions, the QFL s are aroximately flat from the majority carrier region
More informationTransistor Characteristics and A simple BJT Current Mirror
Transistor Characteristics and A simple BJT Current Mirror Currentoltage (I) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current
More informationMicroelectronic Devices and Circuits Lecture 13  Linear Equivalent Circuits  Outline Announcements Exam Two 
6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large
More informationMetaloxidesemiconductor field effect transistors (2 lectures)
Metalidesemiconductor field effect transistors ( lectures) MOS physics (brief in book) Currentvoltage characteristics  pinchoff / channel length modulation  weak inversion  velocity saturation 
More informationSwitching circuits: basics and switching speed
ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V
More informationLecture 18  The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001
6.012  Microelectronic Devices and ircuits  Spring 2001 Lecture 181 Lecture 18  The ipolar Junction Transistor (II) Regimes of Operation April 19, 2001 ontents: 1. Regimes of operation. 2. Largesignal
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationPlan Bipolar junction transistor Elements of smallsignal analysis Transistor Principles: PETs and FETs Field effect transistor Discussion
Physics of silicon transistors  1  Plan Bipolar junction transistor homojunction and heterojunction Doping considerations Transport factor and current gain Frequency dependence of gain in a microwave
More informationBipolar Junction Transistors: Solving EbersMoll Problems
C 305: Fall 016 ipolar Junction Transistors: Solving bersmoll Problems Professor Peter ermel lectrical and Computer ngineering Purdue University, West Lafayette, N USA pbermel@purdue.edu Pierret, Semiconductor
More informationThe Miller Approximation
The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r
More informationVidyalankar S.E. Sem. III [EXTC] Analog Electronics  I Prelim Question Paper Solution
. (a) S.E. Sem. [EXTC] Analog Electronics  Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority
More informationEE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions
EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 pn Junction ptype semiconductor in
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationChapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model commonemitter fixedbias voltagedivider bias emitterbias & emitterfollower commonbase configuration Transistor
More informationRefinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for nonideal transistor behavior Incremental output port resistance Incremental changes
More informationHoles (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2
Part V. (40 pts.) A diode is composed of an abrupt PN junction with N D = 10 16 /cm 3 and N A =10 17 /cm 3. The diode is very long so you can assume the ends are at x =positive and negative infinity. 1.
More informationLecture 38  Bipolar Junction Transistor (cont.) May 9, 2007
6.72J/3.43J  Integrated Microelectronic Devices  Spring 27 Lecture 381 Lecture 38  Bipolar Junction Transistor (cont.) May 9, 27 Contents: 1. Nonideal effects in BJT in FAR Reading material: del Alamo,
More informationEE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET
EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: nchannel MOSFET Source Gate L Drain W L EFF Poly Gate oxide nactive psub depletion region (electrically
More informationLecture 16  The pn Junction Diode (II) Equivalent Circuit Model. April 8, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 161 Lecture 16  The pn Junction Diode (II) Equivalent Circuit Model April 8, 2003 Contents: 1. IV characteristics (cont.) 2. Smallsignal
More informationLecture 18  The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005
6.012  Microelectronic Devices and ircuits  Fall 2005 Lecture 181 Lecture 18  The ipolar Junction Transistor (II) ontents: 1. Regimes of operation. Regimes of Operation November 10, 2005 2. Largesignal
More informationElectronic Devices and Circuits Lecture 18  Single Transistor Amplifier Stages  Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationCurrent mechanisms Exam January 27, 2012
Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms
More informationCapacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationThe Devices: MOS Transistors
The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor
More information