Homework Assignment 09

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Homework Assignment 09"

Transcription

1 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L = 1 nf? (a) khz (b) 10 khz (c) 1.59 khz (d) 10.4 khz Answer: The capacitor sees an equivalent resistance r o = 100K. (If one turns off V I, g m v π = 0, and the current source is effectively removed from the circuit.) The timeconstant is τ = RC = 100 μs. The bandwidth is 1 (2πτ) = 1.59 khz, so the answer is (c). 2. Explain why one cannot use BJT scaling to determine R O in the circuit below. Answer: The transistor is a MOSFET and not a BJT so one cannot use BJT scaling. (Actually, with the appropriate interpretation of the BJT scaling equations, one could use them, but we did not cover this.) 3. Consider the following drive circuit for an IR remote control. The drive signal is a 0 5 V square wave and V CC = 9 V. The MOSFET is replaced with another MOSFET with a V TN that is 20% higher. The new peak current through the IR diode will be a) Increased by 20% b) Decreased by 20% c) Unchanged d) Decreased much more than 20%, since I D = K n (V T V GS ) 2 Answer: (c) 1

2 4. Consider the following drive circuit for an IR remote control. The drive signal is a 0 5 V square wave and V CC = 9 V. The battery voltage drops from 9 V to 5 V, i.e., by a factor 1.8. The average IR diode current will be a) Unchanged b) Increased by about 18% c) Decreased by 18% d) Decreased significantly more than 18%, since I D = K n (V T V GS ) 2 Answer: (a) 5. Consider the following drive circuit for an IR remote control. The drive signal is a 0 5 V square wave and V CC = 9 V. The IR diode is replaced with another IR diode that has a turn-on voltage that is 20% lower. The new peak current through the IR diode will be a) Unchanged b) Increased by 20% c) Decreased by 20% d) Decreased much than 20%, since I D = I S e V D/V T Answer: (a) 6. What is the output voltage V OUT at the end of the 2.82 ms pulse? (3 points) (a) 0 V (b) 0.75 V (c) 5.55 V (d) V Answer: On the rising edge the capacitor is uncharged and 15V appears across R 1. The t τ voltage across the capacitor is V C = 15 1 e where τ = RC = 940 μs is the time t τ constant. The voltage across R 1 is 15e 2.82 ms 940 μs. At t = 2.82 ms, this is 5e = 15e 3 = V, so the answer is (b). 2

3 Question 2 Consider the circuit shown. Determine the current through R L when R L is 1K, 3K, and 5K. Assume V BE(ON) = 0.64 V, β = 200, and V CC = 9 V. (5 points) Since β is large, we can neglect the base current. The voltage at the base is then V B = (9)(1 11) = V. Then V E = = V. The emitter current is then ma. Not that this value is independent of R L as long as the BJT does not saturate. Taking V CE(SAT) = 0.2 V, saturation occurs when the drop across R L is around = 8.62 V. This will occur if when R L = 8.62K. All the R L values in the problem statement are less than this. Thus, the current for all the cases is 1 ma. Question 3 The threshold voltage for each transistor below is 0.4 V. Determine the region of operation (Ohmic, saturation, etc.) of the transistor in each circuit. (6 points) These are n-mosfets, so that the transition between Ohmic and saturation region is at v DS (sat) = v GS V TN. Circuit (a): v DS (sat) = = 1.8 V. Note that in the circuit, v DS = 2.2 V which is more than v DS (sat) MOSFET is in the saturation region. Circuit (b): v DS (sat) = = 0.6 V. Note that in the circuit, v DS = 0.4 V wich is less than v DS (sat) MOSFET is in the Ohmic region. Circuit (c): v GS = 0 V MOSFET is off. 3

4 Question 4 In the amplifier shown, R 1 = R 2 = 470K, R Sig = 10K, R S = 10K, and I DQ = 0.4 ma. For the transistor K n = 50 ma V 2, V TN = 2 V, and λ = Show that an expression for the output resistance is (8 points): 1 1 R o = g m + 1 = R s r o R s r o Determine the numerical value for the output resistance. (8 points) g m A small-signal model for the amplifier is shown. A test source V x was added to determine the output resistance R o. Assuming v i is turned off, then R o = V x I x. KCL at the source (using the convention that currents into the node is positive) gives g m v gs + I x V x V x = 0 R s r o g m v gs + I x V x = 0 R s r o From the circuit, with v i turned off R sig is in parallel with R 1 R 2. However, since the gate current is zero, v g = 0. That is, the gate is at signal ground. Thus, v gs = V x, so that V x g m V x + I x = 0 R s r o R o = V x 1 1 = I x g m + 1 = R s r o R s r o Next, determine numerical values for r o, g m, and R o : r o = 1 1 = λi IDQ ( )( ) = 9.6M g m = 2 K n I DQ = 2 ( )( ) = A V R o = R s r o 1 = (10K) (9.6M) (112) 112 Ω g m g m 4

5 Checking results with SPICE (Not Required) The following circuit was used to check the calculation with SPICE. For the MOSFET the SPICE parameters were set as follows: KP = 0.1, W = L = 100μ and λ = This translates to K n = A V 2. The amplitude for v i was set to zero, and the amplitude for V X was 10 mv. Further, C C = C X = 1F which are essentially shorts at V X s frequency of 1 khz. A transient analysis was performed and the ratio RMS(V(V X )) RMS(I(V X )) gives the output resistance. The value measured was Ω 5

6 Question 5 In the amplifier below, determine R O as indicated. Use the results from the previous question. (5 points) R i = 2.5K R S = 10K R 1 = R 2 = 470K R Sig = 10K I D = 0.4 ma K N = 50 ma V 2 r o The MOSFET is a follower and its output resistance is from the previous question R o = R S 1 g m. Now g m = 2 K n I DQ = A V, so that 1 g m 112 Ω, and consequently R o 112 Ω. Question 6 Shown is the symbol a popular SPICE computer simulation program uses for an n-channel MOSFET, along with labels indicating the drain, source and gate terminals. There is also a 4 th terminal, indicated with an arrow. The physical device has three, not four terminals. A perplexed student asks her professor what is this terminal, and what should she do with in when she builds her circuit in SPICE. Provide a short (3 4 sentence) answer to the student. (3 points) 6

7 Question 7 The transistor in the circuit shows has parameters V TN = 0.8 V and K n = 0.5 ma V 2. Write an expression and sketch the load line for (a) V DD = 4 V, R D = 1K and (b) V DD = 5 V, R D = 3K. Additionally, calculate the Q-point for each case and indicate these on the plot. Finally, for each case determine if the transistor is operating in the saturation or non-saturation region. (12 points) Part (a) Load line is I D = V DS R D + V DD R D = V DS 1K + 4 1K. Assume saturation region operation, then I D = K n (V GS V TN ) 2. From the circuit V GS = V DD = 4 V, so that I D = (0.5)(4 0.8) 2 = 5.12 ma. This current will result in V DS = 4 (5.12)(1) = 1.12 V. This is not a valid so solution assumption of saturation region operation wrong and MOSFET is in Ohmic region. Thus V DD = I D R D + V DS = K N R D [2(V GS V T )V DS V 2 DS ] + V DS Substituting values and simplifying results in 0.5V 2 DS 4.2V DS + 4 = 0 Valid solution is V DS = V, I D = (V DD V DS ) R D = (4 1.1) 1K = 2.92 ma. Part (b) Similar to Part (a), load line is I D = V DS 3K + 5 3K. Assume saturation region operation and find V DS = V, which is not valid. Thus, MOSFET is in Ohmic region. Following the same procedure as for Part (a), we find 1.5V 2 DS 13.6V DS + 5 = 0 The valid solution is V DS = 0.38 V, from which it follows that I D = 1.54 ma I D (ma) Q-point Part (b) Q-point, Part (a) V DS (V) 7

8 Question 8 Find v E, v C1, and v C2 in the circuit shown. Also, find the current though the top 1K resistor. Assume that v BE(on) = 0.7 V, and that β is large. (6 points) The base of Q 1 is at 0.5 V, while the base of Q 2 is at 0 V, so that Q 2 s base-emitter voltage is much larger than that of Q 1, and Q 2 is turned on hard, while Q 1 is essentially off. From this it follows that v C1 = 5 V, and v E = 0.7 V. Further, the current through the top 1K resistor is = (5 0.7) 1K = 4.3 ma v C2 = 5 + (1K)(4.3 ma) = 0.7 V. Question 9 The transistor in the amplifier shown has β = 350 and V BE(ON) = 0.65 V. (a) Make reasonable assumptions and show that I CQ 1 ma (3 points) (b) Show that R i 13.7K (5 points) Part (a) Since β is large, ignore I BQ so that V B = (9)(27 ( ) ) = 1.9V. Since V BE(ON) = 0.65 V, then V RE = = 1.25 V. Consequently, I CQ I E = K = ma 1 ma. Part (b) r π = β g m = I CQ = 8.75K. Using BJT scaling, R i = 65K 18K r π + (1 + β)(1.3k) = 13.68K 8

9 Question 10 Shown is the functional diagram of dual current source IC, REF200. In addition to two 100-μA sources, the IC incorporates a current mirror. Below are a collection of circuits that use the IC. For each of the circuits, determine I out. (12 points) I out I out I out (a) (b) (c) I out I out I out (d) (e) (f) (a) 50 μa, (b) 400 μa, (c) 50 μa, (d) (N + 1)100 μa (e) (N + 1) 100 μa (f) 300 μa 9

10 Question 11 Consider the amplifier below, which amplifies the signal from a sensor with an internal resistance of 1K. Ignore BJT s output resistance, and assume C 1 = C 2 = C 3. β = 100 I C = ma (a) Determine g m, r π (4 points) (b) Using BJT scaling, determine R i see figure (4 points) (c) Using the ratio of the collector and emitter resistors, estimate the overall voltage gain A v = v o v s (4 points) (d) Calculate the voltage gain A v = v o v s, but do not use the approximation that involves the ratio of the collector and emitter resistors, but rather incorporate the β of the transistor (4 points) Part (a) Part (b) g m = 40 I C = 9.8 ms, r π = β g m = 10.2 K R i = R 1 R 2 [r π + (1 + β)r E ] = 300K 160K [10.2K K] = 78.3K Part (c) The effective collector resistance is R C resistance and R i form a voltage divider. Thus = 22K 100K = 18K and the sensor s internal A v = v o R i R C = 78.3 v s R S + R i R E K 3K =

11 Question 12 For the amplifier below, R L = 500 Ω. Determine R o R ib, and estimate A v. (8 points) Hint, use BJT scaling. R S = 10K V + = 3 V V = 3 V I Q = 2 ma β = 300 V A = 100 V C C Since β is large, I C I E = I Q = 2 ma. Then g m = 40I C = 80 ma V and r π = β g m = 3.75K. Using BJT scaling: and R o = R S + r π 1 + β This is an Emitter Follower, so A v 1. = 10K K 301 = 45.7 Ω R i = r π + (β + 1)R L = 3.75K + (301)(500) = 154.3K 11

12 Question 13 The figure is a plot of the open-loop gain function for the LF357 voltage amplifier. An engineer will use the amplifier as an inverting amplifier with a mid-frequency voltage gain at 100. Use the plot and estimate the bandwidth of the feedback amplifier. (3 points) Write expressions for the transfer function A(f) for the open loop amplifier as well as the closed loop, inverting amplifier. (6 points). A gain of 100 is equivalent to a gain of 20 log 10 (100) = 40 db. A horizontal line at 40 db intercepts the LF357 gain curve at 100 khz Thus, the bandwidth ~ 100 khz and the GBP is (100)( ) = The pole for the open-loop amplifier is about 90 Hz, and the low-frequency gain is 105 db, so the open-loop gain is A(f) Open Loop = 1 + j f = j f 90 The closed-loop gain is 100 A(f) Closed Loop = f 1 + j

13 Question 14 Use BJT impedance scaling and determine the input and output impedances of the flowing circuits. Assume β = 300. (12 points) (a) (b) Circuit (a) g m = 40I C = 40 ms and 1 g m = 25 Ω, r π = β g m = 7.5 K. Using BJT scaling R i = (R 1 R 2 ) (r π + (1 + β)r L ) = (33K) (7.5K + (301)R L ) R o = r π (1 + β) = 7.5K Ω (6 points) Circuit (b) We need to find I C first. Since β is large, we will ignore I b and V B = 2.75 V using voltage division. Then V E 2 V and I E = 1 ma. Thus, g m = 40I C = 40 ms and 1 g m = 25 Ω, r π = β g m = 7.5 K. Using BJT scaling: R i = (R 1 R 2 ) r π + (1 + β)(r L 2K) = (15.27K) 7.5K + (301)(R L 2K) r π R o = (1 + β) R E = 25 2K 25 Ω (6 points) 13

14 Question 15 For the circuits below, assume β = 100 and use BJT impedance scaling to find the missing circuit parameters. (2 points for each parameter) I C = 1.7 ma A v (R C R L ) R E = r π = β g m = 100 (40I C ) = 1.47K R ib = r π + (1 + β) = 304.5K I C = 15 ma r π = β g m = 100 (40I C ) = 166 Ω R ib = r π + (1 + β)(r E R L ) = 15.32K R o = R S R 1 R 2 + r π R 1 + β E = 9.7 Ω I C 2 ma A v 1 r π = β g m = 100 (40I C ) = 1.25K R o = R S + r π (1 + β) = Ω 14

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo su7ms_elct7.fm - Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm - Problem 7 points Equation (-)

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Chapter 2 - DC Biasing - BJTs

Chapter 2 - DC Biasing - BJTs Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled

More information

Lecture 11: J-FET and MOSFET

Lecture 11: J-FET and MOSFET ENE 311 Lecture 11: J-FET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS. 8 Electrical Engineering RIB-R T7 Session 08-9 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009 Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm - Problem 7 points Given in

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of

More information

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

Bipolar junction transistors

Bipolar junction transistors Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

Electronics II. Final Examination

Electronics II. Final Examination f3fs_elct7.fm - The University of Toledo EECS:3400 Electronics I Section Student Name Electronics II Final Examination Problems Points.. 3 3. 5 Total 40 Was the exam fair? yes no Analog Electronics f3fs_elct7.fm

More information

Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response. PART C: High Frequency Response Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through

More information

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3 ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

ECE 255, Frequency Response

ECE 255, Frequency Response ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

More information

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution . (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority

More information

Lecture 04: Single Transistor Ampliers

Lecture 04: Single Transistor Ampliers Lecture 04: Single Transistor Ampliers Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture IV 1 / 37 Single-Transistor

More information

Electronics II. Midterm #2

Electronics II. Midterm #2 The University of Toledo EECS:3400 Electronics I su4ms_elct7.fm Section Electronics II Midterm # Problems Points. 8. 7 3. 5 Total 0 Was the exam fair? yes no The University of Toledo su4ms_elct7.fm Problem

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Electronics II. Midterm #2

Electronics II. Midterm #2 The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm - StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1 Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Metal-Oxide-Semiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n- substrate - SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

CM400DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM400DY-24A. IC...400A VCES V Insulated Type 2-elements in a pack

CM400DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM400DY-24A. IC...400A VCES V Insulated Type 2-elements in a pack CM00DY-A CM00DY-A IC...00A CES... 0 Insulated Type -elements in a pack APPLICATION AC drive inverters & Servo controls, etc OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm 9±0. G 80 6±0. CE E C G E

More information

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there. ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit

More information

Chapter7. FET Biasing

Chapter7. FET Biasing Chapter7. J configurations Fixed biasing Self biasing & Common Gate Voltage divider MOS configurations Depletion-type Enhancement-type JFET: Fixed Biasing Example 7.1: As shown in the figure, it is the

More information

Section 1: Common Emitter CE Amplifier Design

Section 1: Common Emitter CE Amplifier Design ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open

More information

MICROELECTRONIC CIRCUIT DESIGN Second Edition

MICROELECTRONIC CIRCUIT DESIGN Second Edition MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

CHAPTER 7 - CD COMPANION

CHAPTER 7 - CD COMPANION Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

More information

The Miller Approximation

The Miller Approximation The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r

More information

EECS 105: FALL 06 FINAL

EECS 105: FALL 06 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1 CMDU-3KA Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697-1 (7) 95-77 Dual IGBTMOD KA-Series Module Amperes/17 Volts B F A G T C MEASURED POINT M C L T - ( TYP.) N R Z CE1 E C1 C E AA S - (3

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING à 7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING Figure. AC coupled common emitter amplifier circuit ü The DC Load Line V CC = I CQ + V CEQ + R E I EQ I EQ = I CQ + I BQ I

More information

ECE 205: Intro Elec & Electr Circuits

ECE 205: Intro Elec & Electr Circuits ECE 205: Intro Elec & Electr Circuits Final Exam Study Guide Version 1.00 Created by Charles Feng http://www.fenguin.net ECE 205: Intro Elec & Electr Circuits Final Exam Study Guide 1 Contents 1 Introductory

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support Chapter 3 Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information