MICROELECTRONIC CIRCUIT DESIGN Second Edition

Size: px
Start display at page:

Download "MICROELECTRONIC CIRCUIT DESIGN Second Edition"

Transcription

1 MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter years, 5.06 years years, 6.65 years MW, 511 ka mv, 5.71 V mv/bit, A, cos (1000t) A 1.19 [5 + 2 sin (2500t) + 4 sin (1000t)] V V, 3.30 V, 76.7 µa, 300 µa µa, 100 µa, 8.20 V Ω, v s kω, 1.07 x 10-3 v s MΩ, i s / 45, 100 / sin 750πt mv, 11.0 sin 750πt µa R 2 /R V, V 1.41 Band-pass amplifier sin (2000πt) cos (8000 πt) V V 1.47 [1980Ω, 2020Ω], [1900Ω, 2100Ω], [1800Ω, 2200Ω] Ω, 800 ppm/ o C , 0.995, 6.16; 3.295, , Chapter For Ge: 35.9/cm3, /cm 3, /cm cm/s, cm/s, A/cm 2, A/cm K

2 cm/s x 10 6 A/cm 2, A K 2.19 Acceptor, donor V/cm x 10 4 atoms /cm 3, /cm x /cm 3, 500/cm 3, 2 x /cm 3, /cm x /cm 3, 333/cm /cm 3, /cm 3, 350cm 2 /V s, 150cm 2 /V s,0.042 Ω cm, p-type /cm 3, 10 4 /cm 3, 710cm 2 /V s, 260cm 2 /V s,2.40 Ω cm, p-type /cm Yes add equal amounts of donor and acceptor impurities. Then n = n i = p, but the mobilities are reduced. See Prob /cm mv, 12.9 mv, 25.9 mv exp( 5000x) A/cm 2 ; 1.20 ma 2.48 (b) 553 A/cm 2, 603 A/cm 2, + 20 A/cm 2, 7 A/cm 2, A/cm 2, -638 A/cm µm Chapter /cm 2, 10 2 /cm 3, /cm 3, 10 5 /cm 3, V, µm V, 1.02 µm, 1.02 µm, µm, 15.8 kv/cm V, 3.06 µm A/cm x /cm K K , 3.17 pa V; V; 0 A; A; A V; 1.38 V V; V V; V mv/k V, 2.74 µm, 11.7 µm, 36.2 µm V 2

3 V, 0 Ω nf/cm 2 ; 37.6 pf ff, 10 fc; 100 pf, 2.5 pc MHz; 21.9 MHz V, V V, V 3.56 Load line: (450 µa, V); SPICE: (443 µa, V) 3.59 (0.600 ma, -4 V) 3.65 Load line: (51µA, 0.49 V); Mathematical model: (49.93µA, V); Ideal diode model: (100 µa, 0 V); CVD model: (40.0µA, V) 3.69 (a) (0.500 ma, 0 V); (0.465 ma, V) 3.71 (a) ( 6.67 V, 0 A), (0 V, 1.67 ma); ( 6.15 V, 0 A), (0.75 V, 1.62 ma) 3.73 (a) (1.00 ma, 0 V) (0 ma, -2 V) (1.00 ma, 0) (d) (0 A, V) (0 ma, V) (0.567 ma, 0 V) 3.76 (1.50 ma, 0 V) (0 A, -5 V) (1.00 ma, 0) 3.78 (I Z, V Z ) = (343µA, 4.00 V) mw W, 3.50 W (V P V on ) V; 1.05 F; 17.8 V; 3530 A; 841 A (ΔT = ms) V, F, 17.8 V, 3540 A, 839 A F; 12 V; 4.24 V; 1540 A; 7530 A V; F; 16.8 V; 210 A; 1770 A µf, 2000 V, 1414 V, ms, 314 A µf; 4000 V; 1410 V; 44.4 A; 314 A δ = 2/3; C = 74.1 µf 82 µf; L = 1.48 mh 1.5 mh V O = V S 1 δ V on; 6.75 V; 37.5 mv; 44.4 ma η = 100% 1 + (1 δ) V on V S ;96.4%; η = 100% 1 + (1 δ) V ond V S + δ V ons V S δ = 0.300; C = 2.08 µf 2.2 µf; L = 7.00 mh 6.8 mh V O = V S δ V on (1 δ); 4.63 V; 116 mv; 46.3 ma; slightly reduced output voltage, <50 percent of ripple voltage and current Slopes: 0, +0.5, 0.667; breakpoints: 2 V, 0 V Slopes: +0.25, +0.5, +0.25, 0; breakpoints: 0 V, 2 V, 4 V 3

4 ma, 4.4 ma, 3.6 ma, 8.6 ns (0.969 A, V); W; 1 A, V µm, µm; far infrared, near infrared Chapter x 10-9 F/cm µa/v 2, 86.3 µa/v 2, 173 µa/v 2, 345 µa/v (a) 4.00 ma/v 2 (b) 4.00 ma/v 2, 8.00 ma/v µa; 218 µa Ω; 148 Ω µa/v A/V µa/v2 ; 1.5 V; enhancement mode; 5/ µa, linear region; 195 µa, saturation region; 0 A, cutoff 4.27 saturation; cutoff; saturation; linear; linear; saturation ma; 1.56 ma ma, 4.52 ma, 2.48 ma ma; 6.00 ma (our linear region model does not contain λ) µa; 98.1 µa µa; 28.8 µa V µa/v2 ; 34.5 µa/v 2 ; 69.0 µa/v 2, 138 µa/v µa; 9.00 µa; µa; 4.10 µa Ω; 94.1 Ω; 250/ A/V µa 4.62 V TN > 0; depletion mode; no F/cm 2 ; 4.32 ff nf 4.81 (390 µa, 1.1 V); triode region 4.84 (70.2 µa, 9.47 V) 4.86 (42.3 µa, 9.00 V) µa; 116 µa kω, 470 kω, 12 kω, 12 kω 20/ (124 µa, 2.36 V) (32.5 µa, 1.26 V) (23.0 µa, 1.12 V) 4

5 4.107 (58.3 µa, 9.20 V) (227 µa, 3.18 V) ma; 10.8 ma (9/10) = 1.11/ (a) (124 µa, 5.70 V) (b) (182 µa, 1.34 V) V, 2.71 ma, 10.8 ma ma; 6.77 ma; 2.61 ma (59.8 µa, 6.03 V), 138 kω (a) (98.4 µa, 2.15 V) kω (200 µa, 13 V) (36.3 µa, 12.9 mv); (31.7 µa, 1.54 V); (28.2 µa, 2.69 V) kω, V 5 V V, 0.77 V ff, 17.3 ff (500 µa, 5.00 V); (79.9 µa, V); (159 µa, 3.70 V) kω; 10.0 kω ma, 0, 1.17 V; 1.38 ma, 0.62 ma, 0.7 V (69.5 µa, 3.52 V); (131 µa, 3.52 V) (69.5 µa, 5.05 V); (456 µa, 6.20 V)) Chapter , 0.667, 3.00, 0.909, 49.0, , , fa; 1.01 fa, V fa ma; 1.07 ma V V µa µa µa, 930 µa, 48.9 µa 5.35 saturation, forward-active region, reverse-active region, cutoff , 87.5, mv, 25.8 mv, 30.2 mv ma; 388 µa; ff; 1.2 pf; 120 pf MHz, 3 MHz 5

6 µm 5.59 I C = 16.3 pa, I E = 17.1 pa, I B = pa, forward-active region; although I C, I E, I B are all very small, the Transport model still yields I C β F I B , 1.73 fa MHz , 17.3 aa µa, µa, 55.3 µa 5.69 v ECSAT is identical to Eq. (5.46) V, V , 43.1 V µa, 4.52 µa, 95.5 µa, V, V, V; 2.19 ma, ma, 2.09 ma, V, V 5.82 (80.9 µa, 3.80 V); (404 µa, 3.80 V) 5.86 (42.2 µa, 4.39 V) 5.92 (7.8 ma, 4.1 V) 5.94 (5.0 ma, 1.3 V) kω (or 62 kω), 1.5 MΩ; 12.4 µa, V µa, 98.4 µa V Ω µa, 86.0 µa, 4.00 V, 5.95 V percent; 70 percent ma, 9.71 ma, 1.28 V, 3.73 V Chapter µw/gate, 2 µa V, 0 V, 0 W, 0.25 mw; 3.3 V, 0 V, 0 V, 0.11 mw 6.5 V OL = 0 V, V OH = 3.3 V, V REF = 1.1 V; Z = A V, 0 V, 2 V, 1 V, V, 2 V, 3 V, 2 V V, 0 V, 1.8 V, 1.5 V, 1.5 V, 1.5 V V, 1.36 V ns µw, 1.52 µa, 5 fj RC; 2.20 RC V, 1.36 V, 0.5 ns, 0.5 ns, 8 ns, 9 ns, 4 ns, 4 ns 6.24 Z = Z =

7 6.29 2; Z = AB; Z = A + B Y = ABC 6.37 V REF = 2.8 V pf µw/gate, 4 µa/gate V, 3.13 V kω; 4.90/1; 1.47 V, V Ω; 2500 Ω; a resistive channel exists connecting the source and drain; 20/ V V, V /1, 1/ V 6.71 ratioed logic so V OH = 3.39 V, V OL = 0.25 V; P = 0.18 mw V /1, 1/1.41, V, 1.36 V /1, 1/ /1, 1/ Y = ( A + B)(C + D)(E + F), 6.18/1, 1/ Y = ACE + ACDF + BF + BDE, 1.40/1, 24.7/1, 16.5/ /4.30, 3.09/ Y = (C + E)[ A(B + D) + G] + F ; 1/1.08, 4.12/1, 6.18/1, 12.4/ /1, 6.06/1, 6.24/1, 6.42/ V, V /1, 8.24/1, 12.4/1, 24.8/ I DS = 2I DS, P D = 2P D ns ns, a potentially stable state exists with no oscillation ns, 6.23 ns, 17.9 ns ns, 4.44 ns, 11.8 ns /1, 25.3/1, 13.6 ns, 2.07 ns (a) 1/3.39 (d) 1/9.20 (f) 1/ V, V /1, 7.09/ V, 4.68 V 7

8 6.152 Y = A + B Chapter µa/v2 ; 11.1 µa/v pa; 450 pa; 450 pa V, 0 V 7.8 cut off, triode, triode, triode, saturation, saturation V; 2.16 V V, 2.16 V /1, 1/ V, 1.70 V; 1.69 V, 1.17 V ns, 3.22 ns ns, 4.36 ns /1, 10.8/ /1, 17.8/ ns, 2.3 ns, 1.2 ns, 1.1 ns, C = 177 ff µw/gate, 16.0 ff, 36.7 ff W; 1.74 W µa; 2.25 µa 7.41 αδt, α 2 P, α 3 PDP /1, 8/1; 15/1, 24/ /1, 2/ ns, 8.13 ns, 8.13 ns 7.57 (a) 5 transistors /1, 15/1 Y = ( A + B)(C + D)E = ACE + ADE + BDE + BCE, 15/1, 18/1, 30/ /1, 6/1, 10/ /1, 24/1, 40/ ns, 2.6 ns ns, 48.8 ns 7.79 V DD 2 3 V DD 1 2 V DD; R 7.85 N = 6, A = 462 A o Ω, 1250 Ω /1 2V IH V DD V IH = 2V IH NM H, C C 2 8

9 7.94 N ML = V DD + 3V TN + V TP 4 N MH = V DD V TN 3V TP 4 Chapter ,435,456 ; 1,073,741, pa µv level is discharged by junction leakage current mv; 2.48 V V, V; 1.83 V mw µa, 1.85 W V V ,304; 11, V DD 2 3 V DD 1 2 V DD; R W 3 = /1 2V IH V DD V IH = 2V IH NM H Chapter V, V, 0 V V, 1.4 V, 1.2 V, 132 mv, 10.4 mw V, 1.70 V, 1.20 V, 1.00 V V, 1.50 V, 1.10 V, 2.67 kω; V, V, V µa kω, 1.17 kω, 200 Ω, 185 Ω V V µa, V kω, 10.0 kω, 58.5 kω, 210 kω V, V, 314 Ω ma ma Ω, 60.0 ma 9.40 (c) 0 V, -0.7 V, 3.93 ma (d) 3.7 V, ma (e) 2920 Ω 9

10 9.43 Y = A + B V; 1.14 V V; V; V; V µa V; 3.59 pj V, V, 5.67 mw; Y = A + B + C, Y = A + B + C, 5 vs kω, 5.40 kω, 31.6 kω, 113 kω kω, 4.84 kω, 120 kω pa, 74.5 fa ; 0.976; 5; V V, V mv, mv V, 0.15 V, 0.66 V, 0.80 V, V, 2.47 ma kω, 22.4 kω V, 0.15 V, 0; 1.06 ma, 31; 1.06 ma vs ma, 0 ma vs. 0.2 ma ma, 34.9 ma 9.99 (I B, I C ): (a) (135 µa, 169µA); (515µA, 0); (169 µa, 506 µa); (0, 0) (b) all 0 except I B1 = I E1 = 203 µa V, 0.15 V; 62.5 µa, 650 µa; Y = ABC ; 1.9 V; 0.15 V; 0, 408 µa V, 0.25 V; 0, 1.00 ma; µa, 963 µa, (I B, I C ): (532µA, 0); (0, 0); (0, 0); (3.75 µa, 150 µa) Y = A + B + C; 0 V, 1.0 V; 0.90 V Y = A + B + C; 0 V, 0.80 V; 0.40 V Chapter Using MATLAB: t = linspace(0,.004); vs = sin(1000*pi*t)+0.333*sin(3000*pi*t)+0.200*sin(5000*pi*t); vo= 2*sin(1000*pi*t+pi/6)+sin(3000*pi*t+pi/6)+sin(5000*pi*t+pi/6); plot(t,vs,t,vo)par 500 Hz: 1 0, 1500 Hz: , 2500 Hz: ; 2 30, 1 30, , 3 30, 5 30 yes db, 111 db, 73.2 db , 2.00 x 10 5, 1.59 x (20 db), 0.1 V 10

11 sin (1000t); there are only two components; dc: 8 V, 159 Hz: 4 V g 12 g 11 g 22 g 21 1 g 21 ; g g 11 g 22 g 21 g g g 22 ; % kω, 1, 101, 4.17 µs MΩ, 240 kω, 24.2 MΩ, 240 kω kω, , 98.3, 16.4 µs kω, 1.00 kω, 6.00 MΩ, 61.0 kω ms, 1, 2001, 20 kω S, 50.0 µs, S, 50.0 µs y 11 y 12 y 21 y 22 y 11 ; y 12 y 22 0; y 21 y 22 ; 1 y g 11 g 12 g 21 g ; g g 21 g 22 g g ; mv; 1.00 W ,, 125 mw, db, 23.9 khz db, 145 Hz db, 10 khz, 10 Hz, 9.99 khz, band-pass amplifier db,, 50 Hz,, high-pass amplifier Hz, 100 khz sin (10πt ) V, sin (1000πt 1.72 ) V, sin (10 5 πt 78.7 ) V sin (2πt ) V, 2.12 sin (100πt ) V, 3.00 sin (10 4 πt )V π s π ; 10 8 π s π khz, -60 db/decade sin (1000πt + 10 ) sin (3000πt + 30 ) sin (5000πt + 50 ) V; Using MATLAB: t = linspace(0,.004); vs = sin(1000*pi*t)+0.333*sin(3000*pi*t)+0.200*sin(5000*pi*t); vo = 10*sin(1000*pi*t+pi/18)+3.33*sin(3000*pi*t+3*pi/18)+2.00*sin(5000*pi*t+5*pi/18); plot(t, 10*vs, t, vo) Chapter db, 120 db, 89.9 db; 5.05 mv MΩ 11

12 mv, 140 db 11.7 (a) 46.8, 4.7 kω, 0, 33.4 db ,, 0, 83.9 db (0.510 sin 3770t 1.02 sin 10000t) V, , 110 kω, 10 kω , ( sin4000πt) V (a) 79.6 pf (b) 82 pf, 19.4 khz , 20.0 kω; +6.00, 47.0 kω, 0, 36.0 kω (not a useful circuit) A; V; V; 7.03 W (choose 10 W), 7.27 W v 1 v 2 R ; ; R(1 + A) V, 3.99 V, 1.99 V, 1.99 V, 3.99 V, 199 µa; 5 MΩ kω, 49.6 kω V; 1.80 V; 0 to 3.00 V in 0.20-V steps A and B taken together, B and C taken together ,, , 8.62 kω, MΩ, 3.75 mω Noninverting to achieve R IN with an acceptable value for resistor R 2 : R OUT can be met; R IN is not achievable v S, 85.9 mω percent db sin 5000πt, 10 sin 120πt; 10, 0.037; 48.6 db; 5.00 sin 5000 πt sin 120πt mv, 0, 26.0 mv, yes, 90.9 kω A V = 10,000 [u(v ID ) u(v ID )] kω, 1.00 MΩ V; V; 18.7 percent V, 0 V; 15.0 V, V One possibility: 1 kω, 20 kω R 2 sc(r 1 R 2 ) + 1 scr R stages: 1 kω, 20 kω, 200 pf A V (s) = s ; bode ( 3.65e13,[13,142e e12]) 12 s kω, 200 kω, 796 pf , 143 khz; 78.1 db, 72.9 khz Two stages 12

13 , 145 khz, [6.35, 7.53], [133 khz, 157 khz] V/µs V/µs kω, 1 kω, 2.55 µf, , 50 Ω; add two 10 9 Ω resistors ,000, Ω, 1 kω, unspecified, 12.7 µf µf, µf, 1.13 kω, 20.0 khz; µf, µf Chapter (a) µf, 0.01 µf, 1.13kΩ, 1, 20 khz ; 1 K s 2 R 1 R 2 C 1 C 2 + s[r 1 C 1 (1 K ) + C 2 (R 1 + R 2 )] + 1 ; kω, 100 kω, µf rad/s, rad/s, 15.6; s s khz, 1.34 khz, 4.05, 63.1 db K 3 K (0, T/2): 0 V, (T/2, 3T/2): 1 V, (3T/2, 5T/2): 4 V, (5T/2, 7T/2): 8 V, (7T/2, 9T/2): 12 V, (9T/2, 5T): 15 V khz, 1.58, 7.96 khz V; V; n ( ) V : 0, 001: , 010: , 100: ; LSB, LSB; LSB, LSB percent, 2.5 percent, 5 percent, 10 percent V, V, V, V kω, LSB, LSB; kω, LSB, LSB (a) (2 n+1-1)c (b) (3n+1)C V, V, V, V, 0 V, V, V, V ( V, V) , 95 µs ns RC s; v O (200 ms) = V For θ = 0, V M T T RC V 1V 2 /(10 4 I s ) V Hz V, 2.62 V, V sinωt T ωt T 13

14 V, V, V Hz µs, 416 µs Chapter sin 2000πt V; 1.03 sin 2000πt V; sin 2000πt V; 2.82 ma 13.3 Bypass, coupling, coupling; 0 V 13.6 Coupling, coupling (ignore repeated question) 13.9 Coupling, coupling, coupling; 0V Coupling, coupling (1.78 ma, 6.08 V) (98.4 µa, 4.96 V) (82.2 µa, 6.04 V) (307 µa, 3.88 V) (338 µa, 5.40 V) (1.00 ma, 7.50 V) Thévenin equivalent source resistance, gate-bias voltage divider, gate-bias voltage divider, sourcebias resistor sets source current, drain-bias resistor sets drain-source voltage, load resistor µa, 50 mv (188 µa, V CE 0.7 V ), 7.52 ms, 532 kω (1.88 µa, V CE 0.7 V), 75.0 µs, 53.3 MΩ (b) +16.7%, -13.6% , 120; 95, Yes, using I C R C = (V CC + V CE )/ ma; 30.7 V , ( 95.0, 94.1) A %, 20% Virtually any desired Q-point (156 µa, 9 V) = 133,000i P + v PK ; (1.4 ma, 215 V); 1.6 ms, 55.6 kω, 89, FET µa,

15 13.94 Yes, it is possible although the required value of V GS V TN (6.70 V) is getting rather large V, (125 µa, 7.5 V) V, 25 V µa kω, 94.4 kω Ω, 3.62 kω (b) 1 MΩ, 0, 7.45 MΩ, 3.53 MΩ MΩ, 45.8 kω MΩ, 508 kω MΩ, 6.82 kω v S, 45.8 kω , 630 Ω, 960 Ω; gain reduced by 25 percent due to lower input resistance kω, 96.0 kω, ma/v 2, 842 kω µw, mw, mw, mw, 2.43 mw mw, mw, 2.07 mw, 24.6 µw, 24.6 µw, 5.58 mw V CC / V, 13.6 V µa, 2.30 V µa, 2.02 V µa, 1.76 V Chapter (a) C-C, (b) not useful, (h) C-B, (o) C-D ,, 20.0 kω, ; 10.0,, 10.0 kω, (a) 6.91 (e) kω, 66.7 kω , 60.9, 2.83 kω, 8.20 kω, 6.76 mv , 11.6, 368 kω, 75 kω, 183 mv , 84.9, 1.00 MΩ, 39.0 kω, 1.49 V ,, 100 Ω, , 1.29, 31.6 kω, 9.19 Ω, 2.83 V , 969, 1.00 MΩ, 555 Ω, 628 V ( V R4 ) V 15

16 , 2.00 kω,, 1; 14.3, 2.00 kω,, , 1.98 kω, 4.92 MΩ, 1; 23.7, 1.98 kω, 10.1 MΩ, , 0.178, 2.73 kω, 24.0 kω, V , 0.274, 252 Ω, 39.0 kω, 14.9 mv Ω Ω (β o + 1)r o = 153 MΩ A v = 398 with R in = 1 MΩ: A C-E amplifier operating at low current should be able to achieve both high A v and high R in. It would be difficult to achieve A V = 52 db with an FET stage A follower has a gain of approximately 0 db. The input resistance of a C-C amplifier is approximately (β o + 1)R L 101(10 kω) = 1 MΩ. Therefore a C-D stage would be preferred to achieve the gain of approximately 1 with R in = 25 MΩ A noninverting amplifier is needed. Either the C-B or C-G amplifier should be able to achieve A V Ω = +10 with R in = 2 kω with proper choice of the Q-point µ f v s, R 5 + r o 1+ g m R v s, ( R th + r π ) /( β o +1) ( ) r o ( 1+ g m R 5 ) ( β (a) z 21 = R o +1)R E B R r π + ( B z 12 = β o +1)R E (a) g 21 = +g m R D g 12 = ( 1/g m )( 1+ R L /r o ) for µ f >> , 0.993, V R B R E R B + r π + ( β o +1)R E R D R D + r o R D r o g 21 g 12 g m r o = µ f SPICE: (106 µa, 7.14 V), 14.2, 369 kω, 65.8 kω SPICE: (9.81 µa, 5.74 V), 0.983, 11.0 MΩ, 2.58 kω SPICE: (268 µa, 8.60 V), 4.26, 1.27 kω, 18.8 kω SPICE: (5.59 ma, 5.93 V), 3.27, 10.0 MΩ, 1.53 kω SPICE: (3.84 ma, 10.0 V), 0.953, 1.00 MΩ, 504 Ω (a) 0.01 µf, 270 µf, 0.15 µf, (b) 2.7 µf (a) 0.50 µf, 0.68 µf (a) 8200 pf, 820 pf (b) µf, 1800 pf, µf ma R 1 = 120 kω, R 2 = 110 kω The second MOSFET R B β o +1 ( ) A v max = 54.8, A v min = 44.8 beyond the Monte Carlo results by approximately 2 percent of nominal gain. z 21 z 12 β o +1 16

17 Voltage is not sufficient transistor will be saturated , 1000 Ω,, 1; A v is 2 larger, R in is 2 smaller Chapter , 1 MΩ, 64.3 Ω , 8.29 kω, 401 Ω , 73.8 kω, 20 kω (a) (5.00 ma, 10.3 V), (1.88 ma, 3.21 V), (2.47 ma, 6.86 V) (b) (5.00 ma, 9.45 V), (2.38 ma, V), (3.15 ma, 4.60 V) Q 2 is saturated! The circuit will no longer function properly as an amplifier (a) (325 µa, 7.14 V), (184 µa, 7.85 V), 86.1 db (a) (50.0 µa, 1.58 V), (215 µa, 13.2 V), 63.2, 1 MΩ, 1.91 kω (a) (223 µa, 2.87 V), (1.96 ma, 5.00 V), 218, 7.61 kω, 241 Ω (b) 1.49, 75.6 kω (a) (4.44 µa, 1.40 V), (23.3 µa, 2.30 V) (b) (4.08 µa, 1.42 V), (23.6 µa, 2.28 V) I C2 = β F I C1, g m = g m, r π = β o r π, r o = r o 2, β o = β o (β o + 1), µ f = µ f I C2 = β F I C1, g m = g m, r π = β o r π, r o = r o β o, µ f = µ f (8.52 µa, 1.42 V), (8.40 µa, V), 48.1, cascode amplifier (a) (20.7 µa, 5.87 V) (b) 273, 243 kω, 660 kω (c) 0.604, 47.1 db, 27.3 MΩ (a) (8.43 µa, 1.36 V) (b) 33.7, 1.02 kω, for differential output, 24.4 db for single-ended output, 594 kω, 200 kω, 4.90 MΩ, 50 kω R EE = 1.1 MΩ, R C = 1.0 MΩ (200 µa, 4.90 V); differential output: 312, 0, ; single-ended output: 155, , 64.2 db; 25.0 kω, 40.4 MΩ, 78.0 kω, 39.0 kω V O = 1.09 V, v o = 0; V O = 1.09 V, v o = 219 mv; 5.00 mv (47.4 µa, 6.23 V); Differential output: 379, 0, ; single-ended output: 190, 0.661, 49.2 db; 158 kω, 22.7 MΩ V, 13.1 V, 3.00 V , , 95.2 db (24.2 µa, 5.36 V); A dd = 45.9, A cc = 0.738, differential CMRR =, single-ended CMRR = 24.7 db,, (91.3 µa, 12.9 V); A dd = 16.7, A cc = 0.486, differential CMRR =, single-ended CMRR = 25.1 db,, (150 µa, 7.60 V); A dd = 26, A cc = 0.233, differential CMRR =, single-ended CMRR = 34.9 db,, 17

18 15.77 (142 µa, 7.27 V); A dd = 21.7, A cc = 0.785, differential CMRR =, single-ended CMRR = 22.9 db,, (20.0 µa, 6.67 V); A dd = 26.8, A cc = 0.119, differential CMRR =, single-ended CMRR = 41.0 db,, V, 1.22 V, 62.1 mv (99.0 µa, 10.8 V); A dd = 30.1, A cc = 0.165, 553 kω (24.8 µa, 12.0 V), (500 µa, 12.0 V), 1040, 202 kω, 20.6 kω, 147 MΩ, v (a) (98.8 µa, 14.3 V), (300 µa, 14.3 V) (b) 551, 40.5 kω, (c) 49.0 kω (d) 34.6 MΩ, (e) v (98.8 µa, 14.3 V), (300 µa, 14.3 V), 27800, 40.5 kω (a) (250 µa, 15.6 V), (500 µa, 15.0 V) (b) 4300,, 165 kω (c) v 2 (d) v (250 µa, 4.92 V), (6.10 µa, 4.30 V), (494 µa, 5.00 V), 4230,, 97.5 kω (250 µa, 10.9 V), (2.00 ma, 9.84 V), (5.00 ma, 12.0 V), 866,, 127 Ω (300 µa, 5.10 V), (500 µa, 2.89 V), (2.00 ma, 5.00 V), 529,, 341 Ω (99.0 µa, 5.00 V), (500 µa, 3.41 V), (2.00 ma, 5.00 V), 11400, 50.5 kω, 224 Ω (4.95 µa, 2.36 V), (24.5 µa, 3.07 V), (245 µa, 3.00 V), 249, 1.01 MΩ, 1.63 kω, v B, v A, 900, r π 3 and r π 4 are low, R IN5 is low (99.0 µa, 1.40 V), (990 µa, 12.0 V), 189, 50.6 kω, 1.06 kω (24.8 µa, 17.3 V), (24.8 µa, 17.3 V), (9.62 µa, 15.9 V), (490 µa, 16.6 V), (49.0 µa, 17.3 V), (4.95 ma, 18.0 V), 88.5 db, 202 kω, 18.1 Ω µa µa µa ma, 0 ma, 10 ma, 12.5 percent percent ma, 19.6 V ma, 0 ma mω (a) 22.8 µa, 43.9 MΩ Two of many: 75 kω, 62 kω, 150 Ω; 68 kω, 12 kω, 1 kω µa, 16.3 MΩ µa, 101 MΩ µa, 168 MΩ, 5.11 µa, 555 MΩ, 16.9 µa, 168 MΩ µa, 22.1 MΩ, 10.0 µa, 210 MΩ µa, 657 GΩ (9.34 µa, 9.03 V), (4.62 µa, 7.62 V), 96.5 db β o1 µ f 1 / V 18

19 Chapter kω R 4.31 kω percent, 13.3 percent percent, µa, µa µa, 383 kω, 574 µa, 192 kω (a) 944 µa, 68.9 kω, 1.52 ma, 41.5 kω µa, 690 µa, 1.31 ma, 600 kω, 100 kω, 66.4 kω µa, 31.3 MΩ, 29.3 µa, 15.2 MΩ kω, 9.78 kω, V EE V for V CB V EE = V / µa, 1.16 GΩ; 20.3 kv; 2.11 V µa, 163 MΩ, 2750 V; 2V BE = 1.4 V µa, 295 µa, 66.5 µa µa µa, 140 µa µa µa, 15.3 µa µa, 308 µa , 6.28 x 10-5, 122 db , 0, (100 µa, 8.70 V), (100 µa, 7.45 V), (100 µa, 2.50 V), (100 µa, 1.25 V), 323, (125 µa, 1.54 V), (125 µa, 2.79 V), (125 µa, 2.50 V), (125 µa, 1.25 V); µa (b) 100 µa (125 µa, 8.63 V), (125 µa, 1.31 V), (125 µa, 10.0 V), (125 µa, 8.71 V), (125 µa, 1.29 V), (125 µa, 6.00 V), (125 µa, 2.75 V); 43.4; 14, , ; 80, ; , 574 Ω, 3.03 x 10 5, 60.0 kω ±1.4 V, ±2.4 V kω, 255 Ω V EE 2.8 V, V CC 1.4 V; 3.8 V, 1.7 V ms, 2.83 MΩ 19

20 (100 µa, 15.7 V), (50 µa, 12.9 V), (50 µa, V), (50 µa, 1.40 V), (50 µa, 29.3 V), (100 µa, V), (100 µa, 13.6 V), 1 ms, 752 kω Chapter 17 s , (s + 1)(s + 20), yes, 25s, 3.18 Hz,3.19 Hz (s + 20) , , s s yes, 1.59 khz,1.58 khz 10 5 s 2 (s + 1)( s + 2), s,,.356 Hz, 71.2 Hz; Hz, 66.7 Hz s (b) 14.1 (23.0 db), 11.8 Hz db, 151 Hz; 35.0 db, 12.6 Hz db, 19.2 Hz , Hz µf Cannot reach 1 Hz; f L = 13.1 Hz for C 1 =, limited by C µf ps ; ; , 98.0, 5000, 100; 350, 42.9, 300, , 1.42 MHz , 1.10 MHz /10 5 RC; 1/10 6 RC; 1/sRC (2750 j4.99) Ω, (2730 j226) Ω, (836 j1040) Ω , 43.9 Hz, 9.02 MHz; 85.1 MHz ; 92.3; 100, , 40.9 MHz , 10.9 MHz , 114 MHz C GD + C GS /(1 + g m R L ) for ω << ω T khz khz GHz, 39.8 ps µa 20

21 MHz MHz, 33.3 V/ms V/µs MHz, 2.91, pf, 12.6, n = 2.81, 21.9 pf MHz; 27.5 MHz MHz, 7.98, 112 / 90 ; 4.74 MHz, 5.21, 46.1 / MHz, 16.4, 75.1; 10.1 MHz, 3.96, 35.4 Chapter /(1+Aβ); percent db MΩ; 2.00 Ω; 20.0 MΩ; 50 mω kω, 1.02 ms, , 3141, , 10.0; 0; , 43.9 MΩ, 2.49 Ω, 98.9 ms Aβ/(1 + Aβ); 99.9 percent kω; 8.11 kω; Ω Ω; 46.2 Ω; 32.4 kω; Ω; 18.6 Ω; 34.4 kω , 973 Ω kω, 50.4 kω, 2.45 kω , 15.2 Ω, 2.72 MΩ Ω; 12.3 Ω; β o /(β o + 1), 2/ g m, (β o + 1)r o db (s/r 2C 2 )/[s 2 + s(1/r 2 C / (R 1 R 2 )C 1 ) + 1/R 1 R 2 C 1 C 2 ] T V = 987, T I = 110, T = db, 0 Hz, 1000 Hz, 0 Hz, 101 khz khz, 9.31 Hz, 81.0 khz, 5.29 Hz khz; A 2000; larger yes, but almost no phase margin; ; yes phase margin is undefined; T ( jω) < 1for all ω

22 18.86 ω = 1/RC, R F = 2R khz, 6.85 V khz, 10.7 V MHz, MHz, 18.1 MHz, mh, ff; MHz, MHz MHz; MHz 22

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises Page Microelectronic Circuit esign Fourth Edition - Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or ) 5.V 3.95 V V

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

ECE 6412, Spring Final Exam Page 1

ECE 6412, Spring Final Exam Page 1 ECE 64, Spring 005 Final Exam Page FINAL EXAMINATION SOLUTIONS (Average score = 89/00) Problem (0 points This problem is required) A comparator consists of an amplifier cascaded with a latch as shown below.

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M - 0 > V M - V Tn V SDp = V DD - V M = (V DD - V M ) V Tp Equate drain

More information

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Electronics II. Final Examination

Electronics II. Final Examination f3fs_elct7.fm - The University of Toledo EECS:3400 Electronics I Section Student Name Electronics II Final Examination Problems Points.. 3 3. 5 Total 40 Was the exam fair? yes no Analog Electronics f3fs_elct7.fm

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 = ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.

More information

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Bipolar junction transistors

Bipolar junction transistors Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma

More information

CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates. University of Connecticut 181 CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3 ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o

More information

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs ECE 642, Spring 2003 - Final Exam Page FINAL EXAMINATION (ALLEN) - SOLUTION (Average Score = 9/20) Problem - (20 points - This problem is required) An open-loop comparator has a gain of 0 4, a dominant

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm - Problem 7 points Given in

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Lecture 28 Field-Effect Transistors

Lecture 28 Field-Effect Transistors Lecture 8 Field-Effect Transistors Field-Effect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use small-signal equialent

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 Third Exam Closed Book and Notes Fall 2002 November 27, 2002 General Instructions: 1. Write on one side of the

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS. 8 Electrical Engineering RIB-R T7 Session 08-9 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata nd Ed. (0/9/07) Page Errata of CMOS Analog Circuit Design nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 8 Line 4 after figure 3.3, CISW CJSW 0 Line from bottom: F F 5 Replace

More information

High-to-Low Propagation Delay t PHL

High-to-Low Propagation Delay t PHL High-to-Low Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (n-channel) immediately switches from cutoff to saturation; the p-channel pull-up switches from triode to

More information

CMOS Logic Gates. University of Connecticut 172

CMOS Logic Gates. University of Connecticut 172 CMOS Logic Gates University of Connecticut 172 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-4187; Rev 4; 7/1 μ μ PART AMPS PER PACKAGE PIN- PACKAGE + * TOP MARK MAX965AZK+ 1 5 SOT3 ADSI MAX965AZK/V+ 1 5 SOT3 ADSK MAX965AUA+ 1 8 μmax-ep* AABI MAX965ATA+ 1 8 TDFN-EP* BKX MAX9651AUA+ 8 μmax-ep*

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual N9 Monolithic N-Channel JFET Dual V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv). to. Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise:

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. Q. 5 carry one mark each. Q. Consider a system of linear equations: x y 3z =, x 3y 4z =, and x 4y 6 z = k. The value of k for which the system has infinitely many solutions is. Q. A function 3 = is

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

2N5545/46/47/JANTX/JANTXV

2N5545/46/47/JANTX/JANTXV N//7/JANTX/JANTXV Monolithic N-Channel JFET Duals Product Summary Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv) N. to.. N. to.. N7. to.. Features Benefits Applications

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

Monolithic N-Channel JFET Duals

Monolithic N-Channel JFET Duals Monolithic N-Channel JFET Duals N96/97/98/99 Part Number V GS(off) (V) V (BR)GSS Min (V) Min (ms) I G Max (pa) V GS V GS Max (mv) N96.7 to N97.7 to N98.7 to N99.7 to Monolithic Design High Slew Rate Low

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Analog Circuit Design Discrete & Integrated

Analog Circuit Design Discrete & Integrated This document contains the Errata for the textbook Analog Circuit Design Discrete & Integrated The Hardcover Edition (shown below at the left and published by McGraw-Hill Education) was preceded by a Spiral-Bound

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f6fs_elct7.fm - Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm - Problem 5 points Given is

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009 Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

More information

CHAPTER 7 - CD COMPANION

CHAPTER 7 - CD COMPANION Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

More information

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode CCS5M2CM2.2kV, 5A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turn-off Tail Current High-Frequency Operation

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode CCS5M2CM2.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turn-off Tail Current High-Frequency Operation

More information

AN6783S. IC for long interval timer. ICs for Timer. Overview. Features. Applications. Block Diagram

AN6783S. IC for long interval timer. ICs for Timer. Overview. Features. Applications. Block Diagram IC for long interval timer Overview The is an IC designed for a long interval timer. It is oscillated by using the external resistor and capacitor, and the oscillation frequency divided by a - stage F.F.

More information

ONE MARK QUESTIONS. 1. The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is

ONE MARK QUESTIONS. 1. The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is ELECTRONICS & COMMUNICATION ENGINEERING ONE MARK QUESTIONS. The condition on R, L and C such that the step response y(t) in the figure has no oscillations, is (a.) R L C (b.) R L C (c.) R L C (d.) R LC

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

500V N-Channel MOSFET

500V N-Channel MOSFET 830 / 830 500V N-Channel MOSFET General Description This Power MOSFET is produced using SL semi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (Ultra-High-Speed U-MOSIII) High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter

More information

SGM nA, Single Rail-to-Rail I/O Operational Amplifier

SGM nA, Single Rail-to-Rail I/O Operational Amplifier GENERAL DESCRIPTION The SGM8041 is guaranteed to operate with a single supply voltage as low as 1.4V, while drawing less than 710nA (TYP) of quiescent current. This device is also designed to support rail-to-rail

More information