D is the voltage difference = (V + - V - ).
|
|
- Nickolas Byrd
- 1 years ago
- Views:
Transcription
1 1
2 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually very high around 100,000 x at low frequency. It has very high input impedance > 10MW. It has a low output impedance. In other words, op-amp behaves almost like an ideal amplifier. We can model an op amp as shown here: D is the voltage difference = (V + - V - ). The output Y is D x A, where A is the gain. Since A is very large, D is generally very small. For example, if the output voltage Y is +5V, A is 10 5, D is only 50µV. The scope you have been using in the laboratory cannot even measure down to this voltage level! An op-amp is actually very complex inside. However, as a user of op amp, and if you use it properly, you can simply ignore its internal complexity and treat it more or less like a perfect differential amplifier (i.e amplifying the difference voltage). Opamps belong to a type of electronic components known as integrated circuits (ICs). The packaging is as shown here where pin 1 is always on the left of the notch in the package and/or indicated with a dot. 2
3 Before we consider how to build an amplifier with an op-amp, let us consider the concept of negative feedback. Simply put, when an event causes something to change, the change itself will counteract the original event. Shown here is the op-amp using negative feedback. The output Y is connect to the V - input of the op amp. If output Y falls (the event), it will cause V - to fall (the change). However, V - falling will increase the difference voltage (V + - V - ). This causes Y to rise, thus counteracting the initial fall in Y. The calculation shown here demonstrate that provided A is large, Y = X. Connecting Y to the V - input ensure that this is always true with this circuit. Note the golden rule: by feeding the output back to the NEGATIVE input of the op-amp which has very large gain, the circuit makes sure that (V + - V - ) approaches zero! 3
4 Opamp requires power supply for it to work. For the sake of simplicity, we assume that the op-amp uses dual voltage supply with a +ve and a ve voltage source as shown here. We will relax this assumption later. To conduct analysis on opamp circuits, we have to make some assumptions as shown here. 4
5 Shown here is one of the most commonly used op-amp circuit to provide non-inverting amplification. We check through the steps considered in the previous slide. This circuit has negative feedback. Input voltage X is connected to V +. Therefore the voltage at V - is also X. Input current is zero. Therefore X is the voltage divider of Y as shown here. For such non-inverting op-amp circuit, Gain is always given by: Gain = Y X = (1+ R 2 R 1 ) For the circuit shown here, the gain is +4. 5
6 There is a special case for the non-inverting op-amp circuit. If you make R2 = 0, and remove R1, then the gain is 1. In fact even if R2 is larger than zero (say 1k), the ratio R2/R1 is still zero since R1 is infinite. This circuit is known as voltage follower, or voltage buffer output Y always follow input X. This circuit may first appear pointless Y is the same as X, why not just use X in the first place? The reason why this circuit is useful is because it ISOLATES the output from the input by presenting a high impedance to the source (Rin is high) and low impedance to the load, hence behaving like an ideal amplifier, but with gain of 1. Let us consider the example here. The source voltage U has a resistance of 99kW. If we connect this directly to a 1W load, the output Y = 0.01U (voltage divider principle). The drop of voltage is due to the loading effect of the 1k resistor on the source. When you put the voltage follow between U and the 1k load resistor, the source U sees the very high input impedance of the op-amp (>10MW), therefore the input X is effective U. The output resistance of the op amp is low. The negative feedback also helps. If the loading effect of the 1k resistor causes Y to drop, this will cause V- input to drop, and raising Y, thus correcting the loading effect. 6
7 This is the circuit for an inverting amplifier using an op-amp. Applying KCL at the V - node gives the following equation: Gain = Y X = ( R 2 R 1 ) Since the V - node is at the same voltage potential of the V + node, which is ground (or earthed), we call V - node in this circuit the virtual earth or virtual ground. Unlike the non-inverting amplifier case, which MUST have a gain 1, inverting amplifier like this can have any gain, larger or smaller than 1. 7
8 With inverting amplifier, since the V- node is virtually zero, you can connect multiple sources to this node via a resistor and produce a summing amplifier. Apply KCL at V- node and you see the summing effect immediately. Each voltage is weighted by the ratio of the feedback resistor R F and the feeding resistor R i (i.e. the weighting is - R F /R i ). The fact that the V- node is held at a fixed voltage (in this case 0v, but it could have been a different voltage, as we will see later), the effect of input sources X1, X2 etc is isolated from each other. 8
9 We can combine the structure of the inverting AND non-inverting amplifier together to form this differential amplifier. The best way to understand this is to apply the principle of superposition. Consider the effect of X on output Z with Y set to zero. The output due to X alone is: Z X = R 2 X R 1 Consider the effect of Y on output Z with X set to zero. The output due to Y alone is more complicated. Firstly, Y is reduced by the voltage divider before reaching the V+ input. V + = R 4 R 3 + R 4 Y This is amplified according to the non-inverting amplifier gain: Z Y = (1+ R 2 R ) ( 4 )Y R 1 R 3 + R 4 Now assume that R 2 = R 4 = 3k, and R 1 = R 3 = 1k. Therefore R 2 Z Y = (1+ R 2 ) ( )Y = R 2 Y R 1 R 1 + R 2 R 1 Z = Z X + Z Y = ( R 2 R 1 ) (Y X) = 3 (Y X) 9
10 So far, we assume that the op-amp behaves like an ideal amplifier with infinite gain A, infinite input resistance Ri, and zero output impedance R O. These assumptions only hold if the resistors we use to construct the circuit are sensible. So how do we choose these resistor values? If we use too low a resistor value, the output current required is too much no good. If we use too high a resistor value, the input current into the opamp is no longer negligible. Then the gain equation we derived using KCL at the input node is no longer valid. In general, we use resistor values in kw to 100kW region. In the next slide, we will consider the assumption of infinite gain A. 10
11 For a practical op-amp, the gain is only very high at low frequency. Shown here is the Gain vs Frequency characteristic of a 741 opamp, one of the most popular op-amp in the history of electronics. The gain is over 100,000 at frequency below 10Hz. However, the characteristic is similar to the of an RC low pass filter. The corner frequency is only 10Hz. It then falls off at -20dB (or x 0.1) / decade. The gain at 1MHz becomes around 1 (i.e. it stop behaving as an amplifier). 11
12 The detail analysis of the impact of this falling gain on bandwidth when we use negative feedback is beyond the scope of this module. However, it is worth stating the following observation: Due to negative feedback, the produce of the overall circuit gain and the effective bandwidth (i.e maximum frequency for this to behave like an amplifier) is a constant. This product: Gain x Bandwidth = gain-bandwidth product = constant. For 741, the product is around The result of this is shown in the plot here. 12
13 13
Operational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and
Operational amplifiers (Op amps)
Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.
EE 321 Analog Electronics, Fall 2013 Homework #3 solution
EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [
Problem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13
RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer
DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First
Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv
or Op Amps for short
or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Define voltage gain, current gain, transresistance gain, and transconductance gain. Explain the operation
Time Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology -Bombay
Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology -Bombay Week -01 Module -05 Inverting amplifier and Non-inverting amplifier Welcome to another
FEEDBACK AND STABILITY
FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x
Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
Biquad Filter. by Kenneth A. Kuhn March 8, 2013
by Kenneth A. Kuhn March 8, 201 The biquad filter implements both a numerator and denominator quadratic function in s thus its name. All filter outputs have identical second order denominator in s and
Design Engineering MEng EXAMINATIONS 2016
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
Active Circuits: Life gets interesting
Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection
E2.2 Analogue Electronics
E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,
Thevenin equivalent circuits
Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The
Switched Capacitor: Sampled Data Systems
Switched Capacitor: Sampled Data Systems Basic switched capacitor theory How has Anadigm utilised this. Theory-Basic SC and Anadigm-1 Resistor & Charge Relationship I + V - I Resistance is defined in terms
0 t < 0 1 t 1. u(t) =
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult
Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA
AA-3 LEZIONI DI FILTI ANALOGICI Danilo Manstretta AA -3 AA-3 High Order OA-C Filters H() s a s... a s a s a n s b s b s b s b n n n n... The goal of this lecture is to learn how to design high order OA-C
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller
6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson
First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through
1. Review of Circuit Theory Concepts
1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements
Low-Sensitivity, Highpass Filter Design with Parasitic Compensation
Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Introduction This Application Note covers the design of a Sallen-Key highpass biquad. This design gives low component and op amp sensitivities.
Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters
Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system
OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier
à OPERATIONAL AMPLIFIERS à OPERATIONAL AMPLIFIERS (Introduction and Properties) Phase relationships: Non-inverting input to output is 0 Inverting input to output is 180 OPERATIONAL AMPLIFIER ª Differential-input,
Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,
Active Circuits: Life gets interesting
Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection
R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai
Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit
ESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
Chapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor
Lecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
Basics of Network Theory (Part-I)
Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]
Chapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
EE-202 Exam III April 6, 2017
EE-202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo--202 DeCarlo--2022 7:30 MWF :30 T-TH INSTRUCTIONS There are 3 multiple choice worth 5 points each and
Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors
Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize
CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers
6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:
E40M. RC Circuits and Impedance. M. Horowitz, J. Plummer, R. Howe
E40M RC Circuits and Impedance Reading Reader: Chapter 6 Capacitance (if you haven t read it yet) Section 7.3 Impedance You should skip all the parts about inductors We will talk about them in a lecture
MAS.836 PROBLEM SET THREE
MAS.836 PROBLEM SET THREE FSR, Strain Gauge, and Piezo Circuits: The purpose of this problem set is to familiarize yourself with the most common forms of pressure and force measurement. The circuits you
AC Circuits. The Capacitor
The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
SOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
EE-202 Exam III April 13, 2015
EE-202 Exam III April 3, 205 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo-7:30-8:30 Furgason 3:30-4:30 DeCarlo-:30-2:30 202 2022 2023 INSTRUCTIONS There are 2 multiple choice
Steady State Frequency Response Using Bode Plots
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 3 Steady State Frequency Response Using Bode Plots 1 Introduction
Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer
Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1
Laboratory III: Operational Amplifiers
Physics 33, Fall 2008 Lab III - Handout Laboratory III: Operational Amplifiers Introduction Operational amplifiers are one of the most useful building blocks of analog electronics. Ideally, an op amp would
3.1 Superposition theorem
Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent
ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces
Adjoint networks and other elements of circuit theory. E416 4.Adjoint networks
djoint networks and other elements of circuit theory One-port reciprocal networks one-port network is reciprocal if: V I I V = Where and are two different tests on the element Example: a linear impedance
15.9 TWO-PORTS* . (15.114) R Thout = v 2a
15.9 TWOPORTS* It should be obvious by now that circuits with dependent sources can perform much more interesting and useful signal processing than those constructed solely from twoterminal resistive elements.
Prepare for this experiment!
Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,
Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation
Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129 Current source Ideal goal Small signal model: Open
Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology
Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )
Monolithic N-Channel JFET Duals
Monolithic N-Channel JFET Duals N96/97/98/99 Part Number V GS(off) (V) V (BR)GSS Min (V) Min (ms) I G Max (pa) V GS V GS Max (mv) N96.7 to N97.7 to N98.7 to N99.7 to Monolithic Design High Slew Rate Low
FEATURES OF 74F06A, 74F07A
7F0, 7F0A, 7F07, 7F07A FEATURES OF 7F0, 7F07 Open Collector output drive ma High speed V output termination voltage Symmetrical propagation delays FEATURES OF 7F0A, 7F07A Open Collector output drive ma
OPAMPs I: The Ideal Case
I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,
EE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
Nonlinear Op-amp Circuits
deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering IIT Bombay May 3, 2013 Overview of op-amp operating regions Linear Region Occurs when the op-amp output is stable i.e.
CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS
CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators
Chapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
Stability and Frequency Compensation
類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,
ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model
Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1
Sallen-Key Low Pass Filter Design Routine
Sallen-Key Low Pass Filter Design Routine v v x i v R o C R C G V noa Fig. : Single-ended Sallen-Key filter Note: This routine is a reduction of a more complex version. This reduction is still taking place,
Switched-Capacitor Filters
Switched-Capacitor Filters Analog sampled-data filters: Continuous amplitude Quantized time Applications: Oversampled and D/A converters Analog front-ends (CDS, etc) Standalone filters E.g. National Semiconductor
Monolithic N-Channel JFET Dual
N9 Monolithic N-Channel JFET Dual V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv). to. Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise:
Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Midterm 2
EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Midterm 2 Exam location: 145 Dwinelle (SIDs ending in 1 and 5) PRINT your student ID: PRINT AND SIGN your
Vidyalankar S.E. Sem. III [INFT] Analog and Digital Circuits Prelim Question Paper Solution
. (a). (b) S.E. Sem. III [INFT] Analog and Digital Circuits Prelim Question Paper Solution Practical Features of OpAmp (A 74) i) Large voltage gain (of the order of 2 0 5 ) ii) Very high input resistance
Energy Storage Elements: Capacitors and Inductors
CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,
Exact Analysis of a Common-Source MOSFET Amplifier
Exact Analysis of a Common-Source MOSFET Amplifier Consider the common-source MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel
Experiment Guide for RC Circuits
Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is
Experiment #6. Thevenin Equivalent Circuits and Power Transfer
Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn
Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku
Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2
Mod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
Electrical System Elements
Electrical System Elements Application areas include: Electromechanical (motor) Electro-optical (phototransistor) Electrothermal Electro-mechano-acoustic (loudspeaker, microphone) Measurement Systems and
VI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS
Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 4 NODAL ANALYSIS OBJECTIVES 1) To develop Nodal Analysis of Circuits without Voltage Sources 2) To develop Nodal Analysis of Circuits with Voltage
Nyquist-Rate D/A Converters. D/A Converter Basics.
Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1
Section 1: Common Emitter CE Amplifier Design
ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open
Simultaneous equations for circuit analysis
Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
ESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1
Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric
ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION
ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging
How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging Stanford University EE Computer Systems Colloquium February 23 rd, 2011 EE380 Peter
Chapter 6: Operational Amplifiers
Chapter 6: Operational Amplifiers Circuit symbol and nomenclature: An op amp is a circuit element that behaes as a VCVS: The controlling oltage is in = and the controlled oltage is such that 5 5 A where
Lecture 9 Time Domain vs. Frequency Domain
. Topics covered Lecture 9 Time Domain vs. Frequency Domain (a) AC power in the time domain (b) AC power in the frequency domain (c) Reactive power (d) Maximum power transfer in AC circuits (e) Frequency
Systematic Circuit Analysis (T&R Chap 3)
Systematic Circuit Analysis (T&R Chap 3) Nodevoltage analysis Using the voltages of the each node relative to a ground node, write down a set of consistent linear equations for these voltages Solve this
Lecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
CHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
Chapter 1: Logic systems
Chapter 1: Logic systems 1: Logic gates Learning Objectives: At the end of this topic you should be able to: identify the symbols and truth tables for the following logic gates: NOT AND NAND OR NOR XOR
ENGG 1203 Tutorial_9 - Review. Boolean Algebra. Simplifying Logic Circuits. Combinational Logic. 1. Combinational & Sequential Logic
ENGG 1203 Tutorial_9 - Review Boolean Algebra 1. Combinational & Sequential Logic 2. Computer Systems 3. Electronic Circuits 4. Signals, Systems, and Control Remark : Multiple Choice Questions : ** Check
Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology
Switched Capacitor Circuits I Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock
Application Report. Mixed Signal Products SLOA021
Application Report May 1999 Mixed Signal Products SLOA021 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3
EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but
One-Port Networks. One-Port. Network
TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal
Current feedback operational amplifiers as fast charge sensitive preamplifiers for
Home Search Collections Journals About Contact us My IOPscience Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out This article has been downloaded
MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features
MAU Series W, Miniature SIP, Single & DC/DC s Key Features Efficiency up to 0 Isolation MTBF >,000,000 Hours Low Cost Input,, and Output 3.3,,9,,,{,{9,{ and { Temperature Performance -0 to UL 9V-0 Package
(d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration
Chapter 1 - Timing Circuits GCSE Electronics Component 2: Application of Electronics Timing Circuits Learners should be able to: (a) describe how a RC network can produce a time delay (b) describe how