Electronics II. Midterm II
|
|
- Molly Richardson
- 2 years ago
- Views:
Transcription
1 The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points Total 0 Was the exam fair? yes no
2 The University of Toledo f4ms_elct7.fm - Problem 7 points Given in Figure.(a) is a feedback amplifier circuit model that is to be designed. Figure.(b) shows an excerpt from the data sheet of the operational amplifier Integrated Circuit (IC) that is available to be used in the design and implementation of the circuit model of Figure.(a). A o = 40dB Σ A Midband voltage gain A fwo = 00dB DC-zero frequency = 0Hz v i v f β v o HF Dominant pole frequency ω d = 6.8Krad/s Slew Rate = 0.5V/µs Power supply voltage V CC = 5V (a) (b) Figure. Feedback amplifier to be designed. (a)feedback amplifier s circuit model. (b)parameter values of the operational amplifier IC to be used as the forward-gain amplifier in the circuit of Fig..(a). For the operational amplifier IC whose parameter values are shown in Figure.(b), demonstrate an ability to:. recognize the definition of an IC operational amplifier parameters, and use their values to assess other performance metrics of the amplifier;. design the feedback amplifier, whose circuit model is shown in Figure., which will: (a) use the given IC amplifier as the forward-gain amplifier, (b) have the midband gain decreased by A o [db] WRT the given IC amplifier s; 3. analyze the feedback amplifier under design to determine: (a) bandwidth of the designed feedback amplifier, (b) full-power bandwidth of the designed feedback amplifier. Solution Hint # For full credit, give answers to all questions, prepare all required circuit diagrams and all mathematical expressions in the space reserved for them; include all symbolic and numerical expressions whose evaluation produces the shown numerical results. An explicit demonstration of understanding the following solution steps is expected.. Calculate the value of reverse transmission factor β that will insure that the feedback amplifier of Figure. will have the midband voltage gain lesser by A o than the forward-gain IC amplifier. /3/4
3 The University of Toledo f4ms_elct7.fm - 3 Show your calculation in the space reserved for equation(s) (-). A fo [db] = A fwo [db] - A o = = 60 db A fo = 0 3 = 000 β A fo = 000 = 0.00 (-). Prepare a drawing of the Bode plot of the asymptotic amplitude characteristic of the forward gain amplifier. Show your work in the space reserved for Figure.. 00 A fw (ω)[db] ω d A fo ω H lg ω ω d Figure. Asymptotic Bode Plot of the magnitude A fw (ω) of the given IC s transfer function A fw (s)..3 Using the prepared Bode plot of Figure., determine the bandwidth of the feedback amplifier of Figure. Show the result of your work inside the Figure., and show your calculation in the space reserved for equation(s) (-). From Figure., the high-frequency corner of the midband frequency range is: ω H = 0 ω d = 0 6.8Krad/s = Krad/s = 6.8 Mrad/s BW = f H - 0 = MHz- 0 = MHz f H = MHz (-) /3/4
4 The University of Toledo f4ms_elct7.fm Determine the gain-bandwidth product of the feedback amplifier of Figure.. Show your calculation in the space reserved for equation(s) (-3). According to determined values of A fo and f H, GBW = A fo f H = = 0 9 = 000 MHz (-3) Also, since GBW product is independent of frequency, GBW = A fwo f d = = 0 9 = 000 MHz.5 Determine the full-power bandwidth of the feedback amplifier of Figure.. Show your calculation in the space reserved for equation(s) (-4). With the rail-to-rail output signal swing, BW ful-power = Slew rate π(v Omax - V Omin ) = Slew rate π(v CC - 0) = π(5-0) (-4) = 05 = 0.6 KHz 9.4 /3/4
5 The University of Toledo f4ms_elct7.fm - 5 Problem 7 points Given is the electric circuit model of a Reference Current Source cell shown in Figure.(a). E + - V EB E + - V EB =0V C B + - V CC C B + - V CC=0V I REF I REF R int R int (a) (b) Figure. BJT Reference Current Source cell circuit model. (a) The complete circuit model. (b)nonlinear AC model for the model in Figure.(a). For the given electric circuit model of Figure.(a), demonstrate an ability to:. prepare and use in analysis the small-signal linearized equivalent models of bipolar junction transistors (BJTs),. determine an expression for the internal AC resistance R int of a given reference current source,. Hint # For full credit, give answers to all questions, prepare all required circuit diagrams and all equations in the space reserved for them; include all symbolic and numerical expressions whose evaluation produces the shown numerical results. An explicit demonstration of understanding the following solution steps is expected Label on the circuit models in Figures.(a),.(b) and.(b) the locations of the transistor terminals: E, B, and C Prepare the nonlinear AC circuit model of the circuit model shown in Figure.(a). Show the prepared model in the space reserved for Figure.(b)..3 Prepare the small-signal equivalent circuit model of the BJT, and show the prepared model in the space reserved for Figure.(a). /3/4
6 The University of Toledo f4ms_elct7.fm Prepare the small-signal, linearized AC, circuit model for the circuit model shown in Figure.(a., Show the prepared model in the space reserved for Figure.(b). B i b i c C v r π be β o i b r ο v ce i t v t R int C i c B i b βo i b r ο rπ E E (a) (b) Figure. Reference Current Source circuit models. (a) Small-signal model of the BJT transistor. (b)smallsignal linearized AC model of the BJT Reference Current Source shown in Figure.(a). Hint # Notice that in the equivalent circuits of Figures.(b) and.(b) the internal AC resistance, R int, of the analyzed Reference Current Source appears between nodes C and E. As a consequence, the remaining steps for determining R int are:.5 through.7..5 Modify the circuit model of Figure.(b) by connecting a test current source, i t, between the nodes C and E, with its current direction into C..5.6 Prepare the equations that solve the modified circuit of Figure.(b) for the voltage v t that appears across the current source i t, and has the active convention positive reference direction with respect to i t. Show the necessary symbolic calculations in the space reserved for equations (-). Since the base current i b in the circuit of Figure.(b) has the value i b = 0A all of the current i t flows through resistance r o, and consequently, v t = r o i t (-).7 Solve the resulting equation(s) of section.6 for the ratio v t /i t. Show the necessary symbolic calculations in the space reserved for equations (-). Solving equation (-) gives, R int = v t i t = r o (-) /3/4
7 The University of Toledo f4ms_elct7.fm - 7 Problem 3 6 points Given is the electric circuit model of a MOSFET differential amplifier shown in Figure 3.(a). +V DD R D =5kΩ +V DD v G + - R D R D V ID OD I D M M I S I S + - V TN =.V R D R D I SS =ma k n = 48µA/V I D I D V DD =8V M M v G I S I S v G = V GS I SS V GS V GS I SS V GS (a) (b) Figure 3. A MOSFET differential amplifier circuit model. (a) The circuit model with connected signal sources. (b)equivalent DC circuit model. for determining the quiescent operating points of the transistors in the circuit of Figure 3.(a). For the given amplifier s circuit model of Figure 3.(a), demonstrate an ability to determine:. operating point of the matched transistors in the circuit of a differential amplifier,. small signal parameters of the transistors, Hint #For full credit, give answers to all questions, prepare all required circuit diagrams and all equations in the space reserved for them; include in due succession all symbolic and numerical expressions whose evaluation produces the shown results. Solution An explicit demonstration of understanding the following solution steps is expected. 3. In the space reserved for Figure 3.(b), prepare the DC equivalent circuit model for determining the quiescent operating points of the transistors in the circuit of Figure 3.(a). 3. Calculate the drain current values of the transistors in the amplifier s circuit model of Figure 3.(b). Show your calculation in the space reserved for equation (3-). I D = -I S = - -I SS = I SS = 0-3 = A (3-) /3/4
8 The University of Toledo f4ms_elct7.fm Calculate the indicated gate to source voltage, V GS, of the transistor(s) in the amplifier s circuit model of Figure 3.. Show your calculation in the space reserved for equation (3-) V GS = V TN + I D (3-) = k =. + 5 = 6.9V n Calculate the common value of the drain to source voltages, V DS and V DS, of the transistors in the amplifier s circuit model of Figure 3.. Show your calculation in the space reserved for equation (3-3). KVL: V DS = - I D R D + V DD + V GS = - I SS = = 4.9V R D + V DD + V GS = (3-3) 3.5 In the space reserved for Figure 3., show the unilateral low-frequency small-signal circuit model of the MOSFET transistor. G i d D v gs g m v gs ro v ds S 3.6 Using the given values of circuit element parameters and currents, determine the value of the small signal transconductance, g m, of the transistors in the given amplifier circuit. Show your calculation in the space reserved for equation (3-4). I D g m = V GS -V = = A/V TN (3-4) /3/4
Electronics II. Final Examination
The University of Toledo f6fs_elct7.fm - Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm - Problem 5 points Given is
Electronics II. Midterm II
The University of Toledo su7ms_elct7.fm - Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm - Problem 7 points Equation (-)
Electronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I su4ms_elct7.fm Section Electronics II Midterm # Problems Points. 8. 7 3. 5 Total 0 Was the exam fair? yes no The University of Toledo su4ms_elct7.fm Problem
Electronics II. Final Examination
f3fs_elct7.fm - The University of Toledo EECS:3400 Electronics I Section Student Name Electronics II Final Examination Problems Points.. 3 3. 5 Total 40 Was the exam fair? yes no Analog Electronics f3fs_elct7.fm
Electronics II. Midterm #1
The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem
Electronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm - StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm
Electronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
Homework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION
ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION
ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
Homework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
Circle the one best answer for each question. Five points per question.
ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
Biasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th
CE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
EECS 105: FALL 06 FINAL
University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last
ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =
ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.
ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
Bipolar Junction Transistor (BJT) - Introduction
Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
ECE2210 Final given: Spring 08
ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that
Electric Circuits I. Midterm #1
The University of Toledo Section number s5ms_elci7.fm - Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm
ECE 6412, Spring Final Exam Page 1
ECE 64, Spring 005 Final Exam Page FINAL EXAMINATION SOLUTIONS (Average score = 89/00) Problem (0 points This problem is required) A comparator consists of an amplifier cascaded with a latch as shown below.
ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution
ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
University of Toronto. Final Exam
University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,
ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
Systematic Design of Operational Amplifiers
Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of
55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
EE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
MICROELECTRONIC CIRCUIT DESIGN Second Edition
MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113
Lecture 11: J-FET and MOSFET
ENE 311 Lecture 11: J-FET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.
Electric Circuits I Final Examination
EECS:300 Electric Circuits I ffs_elci.fm - Electric Circuits I Final Examination Problems Points. 4. 3. Total 38 Was the exam fair? yes no //3 EECS:300 Electric Circuits I ffs_elci.fm - Problem 4 points
Lecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
Electronic Circuits Summary
Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
Refinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes
Advanced Current Mirrors and Opamps
Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------
ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
Voltage AmpliÞer Frequency Response
Voltage AmpliÞer Frequency Response Chapter 9 multistage voltage ampliþer 5 V M 7B M 7 M 5 R 35 kω M 6B M 6 Q 4 100 µa X M 3 Q B Q v OUT V s M 1 M 8 M9 V BIAS M 10 Approaches: 1. brute force OCTC -- do
5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS
5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS 5.1 Object The objects of this experiment are to measure the spectral density of the noise current output of a JFET, to compare the measured spectral density
Chapter 13 Small-Signal Modeling and Linear Amplification
Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors
Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)
ECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
Chapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg
Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)
I. Frequency Response of Voltage Amplifiers
I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C
Amplifiers, Source followers & Cascodes
Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror
RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.
8 Electrical Engineering RIB-R T7 Session 08-9 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)
SOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize
ECE2210 Final given: Fall 13
ECE22 Final given: Fall 3. (23 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided. You must show the steps
Bipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15
J Operating Characteristics: V GS = 0 V 14 V GS = 0 and V DS increases from 0 to a more positive voltage: Gate and Source terminals: at the same potential Drain: at positive potential => reverse biased
Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier
2N5545/46/47/JANTX/JANTXV
N//7/JANTX/JANTXV Monolithic N-Channel JFET Duals Product Summary Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv) N. to.. N. to.. N7. to.. Features Benefits Applications
Department of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions
Electrical Engineering 42/00 Summer 202 Instructor: Tony Dear Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley Final Exam Solutions. Diodes Have apacitance?!?!
Monolithic N-Channel JFET Dual
N9 Monolithic N-Channel JFET Dual V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv). to. Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise:
and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
ESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
Electric Circuits I FINAL EXAMINATION
EECS:300, Electric Circuits I s6fs_elci7.fm - Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm - Problem
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a
ECE 546 Lecture 11 MOS Amplifiers
ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase
Chapter 6: Field-Effect Transistors
Chapter 6: Field-Effect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled
At point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam
Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1
Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop
CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
CMOS Analog Circuits
CMOS Analog Circuits L6: Common Source Amplifier-1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L - CC A 100
EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
ECE137B Final Exam. Wednesday 6/8/2016, 7:30-10:30PM.
ECE137B Final Exam Wednesday 6/8/2016, 7:30-10:30PM. There are7 problems on this exam and you have 3 hours There are pages 1-32 in the exam: please make sure all are there. Do not open this exam until
Chapter7. FET Biasing
Chapter7. J configurations Fixed biasing Self biasing & Common Gate Voltage divider MOS configurations Depletion-type Enhancement-type JFET: Fixed Biasing Example 7.1: As shown in the figure, it is the
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal
Lecture 04: Single Transistor Ampliers
Lecture 04: Single Transistor Ampliers Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture IV 1 / 37 Single-Transistor
BJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage
GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 Third Exam Closed Book and Notes Fall 2002 November 27, 2002 General Instructions: 1. Write on one side of the
Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution
. (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority
EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model
EE 330 Lecture 25 Amplifier Biasing (precursor) Two-Port Amplifier Model Review from Last Lecture Exam Schedule Exam 2 Friday March 24 Review from Last Lecture Graphical Analysis and Interpretation 2 OX
DATA SHEET. BF245A; BF245B; BF245C N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS
DISCRETE SEMICONDUCTORS DATA SHEET N-channel silicon field-effect transistors Supersedes data of April 995 File under Discrete Semiconductors, SC7 996 Jul FEATURES Interchangeability of drain and source
Electric Circuits I. Midterm #1 Examination
EECS:2300, Electric Circuits I s8ms_elci7.fm - Electric Circuits I Midterm # Examination Problems Points. 4 2. 6 3. 5 Total 5 Was the exam fair? yes no EECS:2300, Electric Circuits I s8ms_elci7.fm - 2
3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti
Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +
Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
Chapter 4 Field-Effect Transistors
Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
EE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2
Analog Circuit Design Discrete & Integrated
This document contains the Errata for the textbook Analog Circuit Design Discrete & Integrated The Hardcover Edition (shown below at the left and published by McGraw-Hill Education) was preceded by a Spiral-Bound
Digital VLSI Design I
The University of Toledo Section f04ms - EES:460/560 Digital VLSI Design I: Basic Subsystems Digital VLSI Design I MIDTERM EXAMINATION Problems Points. 4. 3. 5 Total Was the exam fair? yes no The University
Lecture 140 Simple Op Amps (2/11/02) Page 140-1
Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and
ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model
Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1
IFB270 Advanced Electronic Circuits
IFB270 Advanced Electronic Circuits Chapter 0: Ampliier requency response Pro. Manar Mohaisen Department o EEC Engineering Review o the Precedent Lecture Reviewed o the JFET and MOSFET Explained and analyzed
ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1
Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and
EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits
EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00
Half-circuit incremental analysis techniques
6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor
ECEN 325 Electronics
ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non
Chapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance