EE105 Fall 2014 Microelectronic Devices and Circuits


 Carmel Green
 1 years ago
 Views:
Transcription
1 EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB) = g mr L + g m R E = r π + (β +)R E = "# r o ( + g m R E ) $ % = β Without degeneration: Simply set R E = 0 = R L g m + R L = r π + (β +)R L = r π + R th + β g m + R th β = β + = g m R L ß = g m =!" r o + g m R E # $ For the gain,, of the whole amplifier, you need to include voltage/ current dividers at input and output stages 2
2 Terminal Gain and I/O Resistances of MOS Amplifiers Source (CS) Drain (CD) Gate (CG) = g mr L + g m R S = = #$ r o + g m R E % & = Without degeneration: Simply set R S = 0 = = = g m = R L g m + R L = g m R L = g m =!" r o + g m R E # $ For the gain,, of the whole amplifier, you need to include voltage/ current dividers at input and output stages 3 Summary of SingleTransistor Amplifiers BJT MOS Ideal Voltage Amplifiers Emitter Emitter with Deg. Collector Base Moderate Large Large Small 0 Large Very Large Small Large A V Large Moderate ~ Large f H Small Moderate Large Large Ideal Voltage Amplifiers Source Source with Deg. Drain Gate Very Large Very Large Large Small 0 Large Very Large Small Large A V Moderate Small ~ Moderate f H Small Moderate Large Large 4 2
3 Need for Multistage Amplifiers Typical spec for a general purpose operational amplifier Input resistance ~ MΩ Output resistance ~ 00Ω Voltage gain ~ 00,000 No single transistor amplifier can satisfy the spec Cascading multiple stages of amplifiers to meet the spec Usually An input stage to provide required input resistance A middle stage(s) to provide gain An output stage to provide required output resistance It is important to note that the input resistance of the follow on stage becomes the load of the previous stage 5 A 3Stage accoupled Amplifier Circuit MOSFET M operating in the CS configuration provides high input resistance and moderate voltage gain. BJT Q 2 in a CE configuration, the second stage, provides high gain. BJT Q 3, an emitterfollower gives low output resistance and buffers the high gain stage from the relatively low value of load resistance. 6 3
4 A 3Stage accoupled Amplifier Circuit Input and output of overall amplifier is accoupled through capacitors C and C 6. Bypass capacitors C 2 and C 4 are used to get maximum voltage gain from the two inverting amplifiers. Interstage coupling capacitors C 3 and C 5 transfer ac signals between amplifiers but provide isolation at dc and prevent Qpoints of the transistors from being affected. In the ac equivalent circuit, bias resistors are replaced by R B2 = R R 2 and R B3 = R 3 R4 7 dc Equivalent Circuit Transistor Parameters M : K n =0 ma/v 2, V TN = 2 V, λ = 0.02V Q 2 : β F =50, V A = 80V, V BE = 0.7V Q 3 : β F = 80, V A = 60V, V BE = 0.7V At dc, the capacitors isolate each individual transistor stage from the others. Thus, the bias point for each transistor may be found using the single transistor analysis methods already discussed. Q  Points M : 5.00 ma, 0.9 V Q 2 :.57 ma, 5.09 V Q 3 :.99 ma, 8.36 V Small  Signal Parameters M : g m =0.0 ms, r o =2.2 kω Q 2 : g m2 = 62.8 ms, r π 2 = 2.39 kω, r o2 = 54.2 kω Q 3 : g m3 = 79.6 ms, r π 3 =.00 kω, r o3 = 34.4 kω 8 4
5 ac and SmallSignal Equivalent Circuits ac Equivalent Smallsignal Equivalent 9 Input Resistance and Voltage Gain n A v = A vt3 A vt2 A vt R I + n A vt = v 2 = g m R L = 0.0S( 0.478kΩ) = 4.78 v R v = v in MΩ i = v i R I + n 0kΩ +MΩ = 0.990v i R I = 620Ω 7.2kΩ = 598Ω R I 2 = 4.7kΩ 5.8Ω = 4.3kΩ R I 3 = 3.3kΩ 250Ω = 232Ω R L = R I n2 = 598Ω r π 2 =598Ω 2390Ω = 478Ω n = R G =MΩ R L2 = R I 2 n3 = R I 2 [ r π 3 + ( β o3 +)R L3 ] =3.54kΩ A vt2 = v 3 = g m2 R L2 = 62.8S( 3.54kΩ) = 222 v 2 A vt3 = v o ( β o3 +)R L3 = = v 3 r π 3 + ( β o3 +)R L3 0 R G A v = A vt3 A vt2 A vt = +998 R I + R G 5
6 Output Resistance 3 = r π + R th + β g m + R th β R th = R I 2 r o2 = 4.3kΩ 54.2kΩ = 4kΩ 3 = 79.6mS + 4kΩ =2.6Ω+ 50Ω = 62.6Ω 80 ut = R E3 3 = 3.3kΩ 62.6Ω = 6.3Ω Current and Power Gain The input signal current delivered to the amplifier from source v i is v i i i = = 9.90x0 7 v i R I + n and the signal current delivered to the load resistor is i o = v o R L = A vv i 250Ω = 998v i 250Ω = 3.99v i Current Gain: Voltage Gain: Power Gain: A i = i o i i = 4.03x0 6 (32 db) A v = v o v i = 9.98x0 2 (60 db) A P = P o = v i o o = A v A i = 4.02x0 9 (96 db) P i v i i i 2 6
7 Input and Output Signal Range For the first stage: v 0.2( V GS V TN ) v i V For the second stage: v be2 = v 2 = A v v 5mV v 5mV A v v = V = 5mV 4.78 =.05mV v i.05mv =.06 mv 0.99 For the third stage: v be3 = A A 0.990v v v2 i 5mV + g m3 R L3 + g m3 R L3 v i + g m3r L3 A v A v mV = 92.7 µv = 92.7µV ( 92.7µV ) = 998( 92.7µV ) = 92.5 mv Overall: v i min 202mV,.06mV, 92.7µV v o A v SPICE Simulation Circuit 4 7
8 SPICE Simulation Results A v = 000 f L = 500 Hz f H = 500 khz 5 SPICE Simulation Results v in = 00 µv 6 8
9 SPICE Simulation Results v in = 750 µv 7 ShortCircuit Time Constant Estimate for f L An estimate for the lower cutoff frequency for an amplifier with multiple coupling and bypass capacitors is given by the sum of the reciprocals of the "shortcircuit" time constants: f L 2π n i= S C i where S is the resistance at the terminals of the ith capacitor with all the other capacitors shorted. 8 9
10 ShortCircuit Time Constant Estimate for f L C : R S = R I + R G =.0 MΩ C 2 : R 2S = R S S = R S g m = 200Ω 0.0S = 66.7 Ω C 3 : R 3S = R D + R I B2 = R D + R I r π 2 = 620Ω+7.2kΩ 2.39kΩ = 2.72 kω C 4 : R 4S = R E 2 E 2 = R E 2 r π 2 + R th2 β o2 + C 5 : R 5S = R C + R I 2 B3 = R L + R I 2 r π 3 + g m3 R L3 2.39kΩ+7.2kΩ 0.620kΩ =.5kΩ =9.2 Ω 5 R 5S = 4.7kΩ+ 5.8kΩ.0kΩ"# S 232Ω $ % =8.9 kω C 6 : R 6S = R L + R E3 E3 = R L + R E3 r π 3 + R th3 β o3 +.0kΩ+ 5.8kΩ 4.7kΩ R 6S = 250Ω+ 3.3kΩ = 35 Ω 8 9 ShortCircuit Time Constant Estimate for f L f L 2π [.0MΩ 22µF Ω( 22µF) kΩ( 22µF) + 9.2Ω( 22µF) + ] = 5 Hz 35Ω( 22µF) + 8.9kΩ 22µF f L f H 20 0
Biasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationEE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationLecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multistage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationESE319 Introduction to Microelectronics Common Emitter BJT Amplifier
Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point 
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationCE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202  Manuel Toledo August 20, 2012 INEL 4202  Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More information1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
More informationChapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model commonemitter fixedbias voltagedivider bias emitterbias & emitterfollower commonbase configuration Transistor
More informationMICROELECTRONIC CIRCUIT DESIGN Second Edition
MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113
More informationECE 523/421  Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42  Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More informationCHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis  Bode plot low frequency response BJT amplifier Miller
More informationESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationThe CommonEmitter Amplifier
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The CommonEmitter Amplifier Basic Circuit Fig. shows the circuit diagram
More informationBipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
More informationCapacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION  SOLUTIONS (Average score = 78/100) R 2 = R 1 =
ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.
More information55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationEE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR
EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationQuick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V Odm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V Odm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V Odm is the differential output offset
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More informationElectronics II. Midterm II
The University of Toledo su7ms_elct7.fm  Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm  Problem 7 points Equation ()
More informationChapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cutoff frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering HighFrequency Model BJT & MOS B or G r x C f C or D r
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationElectronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm  StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm
More information(Refer Slide Time: 1:49)
Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide
More informationfigure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
More informationElectronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Threeterminal device whose voltagecurrent relationship is controlled by a third voltage
More informationProblem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationLecture 140 Simple Op Amps (2/11/02) Page 1401
Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and
More informationEE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET
EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: nchannel MOSFET Source Gate L Drain W L EFF Poly Gate oxide nactive psub depletion region (electrically
More informationLecture 18. Common Source Stage
ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationElectronic Devices and Circuits Lecture 18  Single Transistor Amplifier Stages  Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
More informationChapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support
Chapter 3 Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring2012/ecd
More informationChapter 6: FieldEffect Transistors
Chapter 6: FieldEffect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled
More informationMultistage Amplifier Frequency Response
Multistage Amplifier Frequency Response * Summary of frequency response of singlestages: CE/CS: suffers from Miller effect CC/CD: wideband  see Section 0.5 CB/CG: wideband  see Section 0.6 (wideband
More informationCHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012
1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET DFET (Depletion MOS) MOSFET (Enhancement EFET) DC biasing Small signal
More informationFET SmallSignal Analysis
CHAPTER FET mallignal Analysis 9 9.1 INTROUCTION Fieldeffect transistor amplifiers provide an excellent voltage gain with the added feature of a high input impedance. They are also considered lowpower
More information6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
More informationLecture 090 Multiple Stage Frequency Response  I (1/17/02) Page 0901
Lecture 9 Multiple Stage Frequency esponse I (/7/2) Page 9 LECTUE 9 MULTIPLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 56527) Objective The objective of this presentation is:.) Develop methods for the frequency
More informationSOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
More informationCommon Drain Stage (Source Follower) Claudio Talarico, Gonzaga University
Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i  v o V DD v bs  v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs  C
More informationAs light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR
LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationThe equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani
ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Opamp Circuits 2. Differential Amplifiers 3. Comparator Circuits
More informationElectronics II. Midterm #1
The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem
More informationThe Miller Approximation
The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationFrequency Response Prof. Ali M. Niknejad Prof. Rikky Muller
EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:
More informationAnalog Circuit Design Discrete & Integrated
This document contains the Errata for the textbook Analog Circuit Design Discrete & Integrated The Hardcover Edition (shown below at the left and published by McGrawHill Education) was preceded by a SpiralBound
More informationDC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15Mar / 59
Contents Three States of Operation BJT DC Analysis FixedBias Circuit EmitterStabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors
More informationRefinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for nonideal transistor behavior Incremental output port resistance Incremental changes
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More informationSwitching circuits: basics and switching speed
ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V
More informationLecture 150 Simple BJT Op Amps (1/28/04) Page 1501
Lecture 50 Simple BJT Op Amps (/28/04) Page 50 LECTURE 50 SIMPLE BJT OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis
More informationCHAPTER 7  CD COMPANION
Chapter 7  CD companion 1 CHAPTER 7  CD COMPANION CD7.2 Biasing of SingleStage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and fieldeffect
More informationPhiladelphia University Faculty of Engineering Communication and Electronics Engineering
Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier CircuitsII BJT and FET Frequency Response Characteristics: 
More informationGEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of
More informationEstimation of Circuit Component Values in Buck Converter using Efficiency Curve
ISPACS2017 Paper 2017 ID 21 Nov. 9 NQL5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36
More informationChargeStorage Elements: BaseCharging Capacitance C b
ChargeStorage Elements: BaseCharging Capacitance C b * Minority electrons are stored in the base  this charge q NB is a function of the baseemitter voltage * base is still neutral... majority carriers
More informationLecture 210 Physical Aspects of ICs (12/15/01) Page 2101
Lecture 210 Physical Aspects of ICs (12/15/01) Page 2101 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: TextSec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits
More informationc Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved
More informationFigure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors
Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationElectronics II. Midterm II
The University of Toledo f4ms_elct7.fm  Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm  Problem 7 points Given in
More information5. EXPERIMENT 5. JFET NOISE MEASURE MENTS
5. EXPERIMENT 5. JFET NOISE MEASURE MENTS 5.1 Object The objects of this experiment are to measure the spectral density of the noise current output of a JFET, to compare the measured spectral density
More informationCARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
More informationELECTRONICS IA 2017 SCHEME
ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8
More informationElectronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory
Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, AntiLogarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in
More information