DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Size: px
Start display at page:

Download "DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C"

Transcription

1 MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C

2 TWO STAGE CMOS OP-AMP It consists of two stages: First stage amplifier is a differential amplifier: Q1-Q2 with active loads Q3-Q4 and biasing current source Q5- Q8 Second stage amplifier is a Common Source amplifier Q6 with active load Q7 Figure from Sedra/Smith Copyright 2010 by Oxford University Press, Inc. 2

3 TWO STAGE CMOS OP-AMP The two stage CMOS op-amp can be modeled as follows: G m1 & G m2 is the trans-conductance gains of the 1 st and 2 nd stage respectively R 1 & R 2 is the output resistances of the 1 st and 2 nd stage respectively C 1 & C 2 is the parasitic capacitances of the 1 st and 2 nd stage respectively C c is used as a compensation capacitance to control the bandwidth Figure from Sedra/Smith Copyright 2010 by Oxford University Press, Inc. 3

4 TWO STAGE CMOS OP-AMP The model parameters are derived at the mid-band (All capacitors are open circuit) V o1 = g m1,2 R 1 V 1 V 2 G m1 = g m1,2 R 1 = r ds2 r ds4 V out = g m6 R 2 V o1 G m2 = g m6 R 2 = r ds6 r ds7 A Vd = g m1,2 g m6 R 1 R 2 4

5 TWO STAGE CMOS OP-AMP Op-amp High frequency gain is given by: G m1 G m2 R 1 R 2 1 C c s G A Vd s = m2 1 + s C C + C 2 R 2 + C C + C 1 R 1 + G m R 1 R 2 C C + s 2 R 1 R 2 C C C 1 + C C C 2 + C 1 C 2 The transfer function is characterized by two poles and one zero 5

6 TWO STAGE CMOS OP-AMP Op-amp High frequency gain is given by: A Vd s = A Vo 1 s ω z 1 + s 1 + s ω p1 ω p2 A Vo = G m1 G m2 R 1 R 2 ω z = G m2 C c ω p1 1 G m2 R 1 R 2 C c ω p2 G m2 C c C 1 C 2 + C C C 1 + C 2 G m2 C 1 + C 2 C C controls the bandwidth of the op-amp! 6

7 COMPENSATION THEORY Stability of Closed-loop Systems 7

8 CLOSED-LOOP SYSTEMS USING OP-AMPS Voltage op-amps are used to realize different analog signal processing applications Negative feedback concept is used to implement these applications Example: Inverting amp. v O v I = R 2 R 1 This transfer function is derived under the assumption that the amplifier is ideal (infinite gain and zero input current) This is a closed loop system formed with op-amp in feed-forward path and resistor network (R 1 and R 2 ) in the feedback path Figure from Sedra/Smith Copyright 2010 by Oxford University Press, Inc. 8

9 CLOSED-LOOP SYSTEMS USING OP-AMPS Comparing the inverting amplifier with the closed-loop system v O v I = R 2 R 1 A = v O v I = a(s) 1 + a s f f = R 1 R 2 A(ω = 0) = a(ω = 0) 1 + a(ω = 0) f for af 1 Figure from Sedra/Smith Copyright 2010 by Oxford University Press, Inc. v O v I 1 f 9

10 CLOSED-LOOP SYSTEMS USING OP-AMPS Closed-loop system employing negative feedback must be stable for proper operation Thus, the system eqn. roots must satisfy the stability condition, Poles are in the left half plane A critically stable system is realized when the poles are on the jω axis Since the feedback network is purely passive, the stability depends on the amplifier s frequency response a(s) gain freq. = 1 = 0dB Phase gain freq. >

11 CLOSED-LOOP SYSTEMS USING OP-AMPS An important frequency is the unity gain freq. ω T The frequency at which the loop gain a s = ω T f = 1 magnitude equals to one (Zero db) Critically stable system condition Phase margin is an indication for stability It is calculated as the phase of the loop gain at the unity gain frequency (Critical stable condition) A = v O v I = a(s) 1 + a s f Critcally stable 1 + a s = ω T f = 0 Phase margin = Phase a s = ω T f gain freq. = 1 = 0dB Phase gain freq. >

12 CLOSED-LOOP SYSTEMS USING OP-AMPS A standard 60 deg. Phase margin is sufficient to stabilize the loop and reduce the overshoot in the system transient response Phase margin = = 60 Phase a s = ω T f = 120 a s = ω T f = 1 a s = ω T = 1 f A s = ω T = a s = ω T 1 + e j120 A s = ω T = 1 f Critcally stable 1 + a s = ω T f = 0 gain freq. = 1 = 0dB Phase gain freq. >

13 COMPENSATION OF CLOSED LOOP AMP. Assume that a(s) is a three pole amplifier, and f=1 The phase margin is negative for the closed loop We have to stabilize the loop by adding a dominant pole to the system 13

14 EX.: COMPENSATION OF OP-AMPS By adding a compensating capacitor across the second stage, we can control the phase margin of the op-amp Increasing the phase margin stabilize any closed-loop system realized using the op-amp We have to select the value of Cc to achieve the desired phase margin A Vd s = A Vo 1 s ω z 1 + s 1 + s ω p1 ω p2 ω p1 1 G m2 R 1 R 2 C c ω p2 G m2 C 1 + C 2 ω z = G m2 C c 14

15 COMPENSATION OF OP-AMPS The first pole P1 is the dominant pole (very small compared to the zero and the second pole) P1 introduces 90 phase shift before the unity gain frequency The phase margin is affected by the second pole and zero A Vd s = A Vo 1 s ω z 1 + s ω 1 + s p1 ω p2 A Vo 1 + s ω p1 A Vo ω p1 s unity gain freq. ω T A Vo ω p1 ω z = G m2 C c ω p1 1 G m2 R 1 R 2 C c ω p2 G m2 C 1 + C 2 15

16 EXAMPLE For a two stage voltage Op-amp given in figure, calculate the unity gain frequency and phase margin? A Vd s = A Vo 1 s ω z 1 + s 1 + s ω p1 ω p2 A Vd jω T = A Vo 1 + ω T ω p ω T ω z ω T ω p2 2 = 1 Phase margin = 180 tan 1 ω T ω z tan 1 ω T ω p1 tan 1 ω T ω p2 For stable system the phase margin should be greater than zero 16

17 COMPENSATION OF OP-AMPS Note: To check the speed of op-amp, the Slew rate is calculated/measured Slew rate is the rate of change of the output voltage, when the opamp is used as a buffer at unit step input SR = dv O dt V i (t) = 2 V i (s) = 2 s A FB s s ω p1 V O (s) = 2 s s ω p1 V O (t) = 2 1 e ωp1t Figure from Gray/Meyer Copyright by John Wiley & Sons, Inc. 17

18 COMPENSATION OF OP-AMPS The higher the 3-dB frequency is the faster the output response V O (t) = 2 1 e ω p1t However, the high input voltage causes the input stage to saturate (Q1 off and Q2 on) Thus all the current of Q5 will flow in C C SR = dv O dt = I D5 C c Predicted Response Actual Response Figure from Gray/Meyer Copyright by John Wiley & Sons, Inc. 18

19 NOTES We can control the op-amp specs as follows: Choosing the transistors trans-conductance gain g m controls the gain (Change biasing current I D or Aspect ratio W/L) g m can be used to control poles (consequently it controls phase margin, stability and slew rate) There are different techniques to change the poles of the opamp (Check the reference!) 19

20 DESIGN EXAMPLE CMOS Op-amp design 20

21 CMOS DESIGN OF VOLTAGE OP-AMPS For the two stage op-amp shown in Figure, find the following: All DC currents as a function of I REF Expression of the mid-band gain The maximum and minimum input voltage range The maximum and minimum output Voltage range Expressions of the poles and zeros If the zero is 5 times the unity gain frequency, what is the value of the second pole to achieve 45 phase margin? 21

ECEN 325 Electronics

ECEN 325 Electronics ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

Lecture 120 Compensation of Op Amps-I (1/30/02) Page ECE Analog Integrated Circuit Design - II P.E. Allen

Lecture 120 Compensation of Op Amps-I (1/30/02) Page ECE Analog Integrated Circuit Design - II P.E. Allen Lecture 20 Compensation of Op AmpsI (/30/02) Page 20 LECTURE 20 COMPENSATION OF OP AMPS I (READING: GHLM 425434 and 624638, AH 249260) INTRODUCTION The objective of this presentation is to present the

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Feedback concept Feedback in emitter follower Stability One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH ) Lecture 30 Compensation of Op AmpsII (/26/04) Page 30 LECTURE 30 COMPENSATION OF OP AMPSII (READING: GHLM 638652, AH 260269) INTRODUCTION The objective of this presentation is to continue the ideas of

More information

FEEDBACK AND STABILITY

FEEDBACK AND STABILITY FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Lecture 140 Simple Op Amps (2/11/02) Page 140-1 Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

Frequency Dependent Aspects of Op-amps

Frequency Dependent Aspects of Op-amps Frequency Dependent Aspects of Op-amps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and non-inverting amplifier circuits with resistive

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response Advanced Analog Integrated Circuits Operational Transconductance Amplifier I & Step Response Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard Boser

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

Laboratory III: Operational Amplifiers

Laboratory III: Operational Amplifiers Physics 33, Fall 2008 Lab III - Handout Laboratory III: Operational Amplifiers Introduction Operational amplifiers are one of the most useful building blocks of analog electronics. Ideally, an op amp would

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1 Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

Electronics II Physics 3620 / 6620

Electronics II Physics 3620 / 6620 Electronics II Physics 3620 / 6620 Jan 28, 2009 Part 1 Operational Amplifiers 2/3/2009 1 Some History Fairchild 0.60 Inches 1964: The First Linear IC The µa702 Op-Amp 12 Transistors Designer: Bob Widlar

More information

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback Analysis and Design of Analog Integrated Circuits Lecture 12 Feedback Michael H. Perrott March 11, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Open Loop Versus Closed Loop Amplifier

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs Advanced Analog Integrated Circuits Operational Transconductance Amplifier II Multi-Stage Designs Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation

Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation 1 A. Closed Loop Transient Response Waveforms 1. Standard Quadratic T(s) Step Response a. Q > 1/2 Oscillatory decay to a

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

Unit 8: Part 2: PD, PID, and Feedback Compensation

Unit 8: Part 2: PD, PID, and Feedback Compensation Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1 Lecture 50 Simple BJT Op Amps (/28/04) Page 50 LECTURE 50 SIMPLE BJT OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Section 4. Nonlinear Circuits

Section 4. Nonlinear Circuits Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

More information

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Metal-Oxide-Semiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n- substrate - SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate

More information

Feedback design for the Buck Converter

Feedback design for the Buck Converter Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University ECEN 67 (ESS) Op-Amps Stability and Frequency Compensation Techniques Analog & Mixed-Signal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative

More information

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Introduction This Application Note covers the design of a Sallen-Key highpass biquad. This design gives low component and op amp sensitivities.

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Feedback Control G 1+FG A

Feedback Control G 1+FG A Introduction to Operational Amplifiers Circuit Functionality So far, only passive circuits (C, L and LC) have been analyzed in terms of the time-domain operator T and the frequency-domain operator A(ω),

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OVA & OTA 1 OVA VA-Operational Voltage Amplifier Ideally a voltage-controlled voltage source Typically contains an output stage that can drive arbitrary loads, including small resistances Predominantly

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI INGEGNERIA ELETTRICA, ELETTRONICA E DEI SISTEMI Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

More information

Pipelined multi step A/D converters

Pipelined multi step A/D converters Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 04 Nov 2006 Motivation for multi step A/D conversion Flash converters: Area and power consumption increase

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design EE 435 Lecture 6 Compensation Systematic Two-Stage Op Amp Design Review from last lecture Review of Basic Concepts Pole Locations and Stability Theorem: A system is stable iff all closed-loop poles lie

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A ECS 40, Fall 2008 Prof. ChangHasnain Test #3 Version A 10:10 am 11:00 am, Wednesday December 3, 2008 Total Time Allotted: 50 minutes Total Points: 100 1. This is a closed book exam. However, you are allowed

More information

Switched Capacitor: Sampled Data Systems

Switched Capacitor: Sampled Data Systems Switched Capacitor: Sampled Data Systems Basic switched capacitor theory How has Anadigm utilised this. Theory-Basic SC and Anadigm-1 Resistor & Charge Relationship I + V - I Resistance is defined in terms

More information

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA AA-3 LEZIONI DI FILTI ANALOGICI Danilo Manstretta AA -3 AA-3 High Order OA-C Filters H() s a s... a s a s a n s b s b s b s b n n n n... The goal of this lecture is to learn how to design high order OA-C

More information

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

More information

Design of a Lead Compensator

Design of a Lead Compensator Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

Lectures on STABILITY

Lectures on STABILITY University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science νin ( ) Effect of Feedback on Frequency Response a SB Robert W. Brodersen EECS40 Analog

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Appendix A Butterworth Filtering Transfer Function

Appendix A Butterworth Filtering Transfer Function Appendix A Butterworth Filtering Transfer Function A.1 Continuous-Time Low-Pass Butterworth Transfer Function In order to obtain the values for the components in a filter, using the circuits transfer function,

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

Integrated Circuit Operational Amplifiers

Integrated Circuit Operational Amplifiers Analog Integrated Circuit Design A video course under the NPTEL Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India National Programme on Technology Enhanced

More information

6.302 Feedback Systems

6.302 Feedback Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

Compensator Design for Closed Loop Hall-Effect Current Sensors

Compensator Design for Closed Loop Hall-Effect Current Sensors Compensator Design for Closed Loop HallEffect Current Sensors Ashish Kumar and Vinod John Department of Electrical Engineering, Indian Institute of Science, Bangalore 5600, India. Email: ashishk@ee.iisc.ernet.in,

More information

ECE 6412, Spring Final Exam Page 1

ECE 6412, Spring Final Exam Page 1 ECE 64, Spring 005 Final Exam Page FINAL EXAMINATION SOLUTIONS (Average score = 89/00) Problem (0 points This problem is required) A comparator consists of an amplifier cascaded with a latch as shown below.

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 27: State Space Filters 1 Review Q enhancement of passive RC using negative and positive feedback Effect of finite GB of the active device on

More information

Chapter 2 Switched-Capacitor Circuits

Chapter 2 Switched-Capacitor Circuits Chapter 2 Switched-Capacitor Circuits Abstract his chapter introduces SC circuits. A brief description is given for the main building blocks of a SC filter (operational amplifiers, switches, capacitors,

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Define voltage gain, current gain, transresistance gain, and transconductance gain. Explain the operation

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs ECE 642, Spring 2003 - Final Exam Page FINAL EXAMINATION (ALLEN) - SOLUTION (Average Score = 9/20) Problem - (20 points - This problem is required) An open-loop comparator has a gain of 0 4, a dominant

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Open-loop Gain: g m r o

More information