Chapter 9 Bipolar Junction Transistor

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 9 Bipolar Junction Transistor"

Transcription

1 hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal device, which consists a collector (), an emitter () and a base (). There are two types of JTs: NPN type and PNP type. Fig. 1 shows the symbols of both NPN and PNP types JTs. i i N i i P P N N P i NPN i PNP The terminal currents are illustrated in the above figure. It should be noted that i is always greater than i and i. 1. haracteristics of JT JT is a current-controlled device; the values of i and i are determined primarily by i. i = β i, where β is the ratio between the collector and base currents. i = i +i = (1 + β) i. For some cases, β can be written as h F. In practice, β is much greater than 1. So, i i., and are the voltages across collector-to-emitter, base-to-emitter, and collector-to-base, respectively. -1-

2 hapter 9 - JT ipolar Junction Transistor mitter is heavily doped and collector is relatively lightly doped with the same material. The base is with the smallest size and lightest doped in a JT. 2. Operation of a NPN JT Fig. 1 shows a NPN JT, which is connected to two external dc source and they are and. This circuit configuration is so called common emitter configuration. (1) > (2) is kept y using KL, two equations constant can be obtained I I = + I = + I = 0.7 I Increasing causes decreasing Fig. 1 ommon mitter onfiguration When I increases, I and also increase. So, decreases. onversely, decreasing I causes increasing of. So, if is an ac signal, e.g. sinusoid, will be an inverted sinusoid. Such arrangement is rarely used for actual application. 3. D load line and ollector haracteristic urve D load line a graph that represents all the possible combinations of I and. D load line is constructed from the equation = + I is a fixed value When I = 0, (off)=. When = 0, I (sat)= /. -2-

3 hapter 9 - JT ipolar Junction Transistor ollector haracteristic urve D load line ollector haracteristic urve illustrates the relationship among I, I and. When I is fixed, a constant amount of I is drawn from the supply source. The characteristic curve shown in the last page illustrates that different values of give different. Fig. 2 ombination of dc load line and collector characteristic curve The graph shown in Fig. 2 is used to determine the operating point (Q point) of a JT. Once is determined, the dc load is kept unchanged. The intersection between the dc load line and the collector characteristic curve is the operating point (Q-point). That means, when the JT is subject to an input current I, -3-

4 hapter 9 - JT ipolar Junction Transistor respective and I can be obtained at the collector terminal of JT. With the use of this graph, we can determine the desired operating condition for a JT. In practice, Q-point is selected at the mid-point of and I. 4. D iasing The ac operation of an amplifier depends on its initial values of I, I, and. The function of dc biasing is to set the initial value of I, I, and. Two dc biasing methods are introduced: base bias and voltage divider bias. Fig. 3(a) and 3(b) show the circuit configurations of base bias and voltage divider bias, respectively. The primary goal of circuit analysis is to determine the Q-point values of I and for a given I. Fig. 3(a) ase bias Fig. 3(b) oltage divider bias ase bias Fig. 3(a) shows a base-biased JT circuit. After applying KL, two equations can be formulated: = I +, = I + The base current I can be obtained as, I = So, can be obtained as, = I where I I β = β. -4-

5 hapter 9 - JT ipolar Junction Transistor We can say that the obtained I and equal to I Q and Q. The subscript Q means the Q-point. Appropriate choosing the value of can adjust the location of Q-point at the midpoints of and I. Disadvantage: The value of β is temperature dependent. I could be changed under different operating temperature such that the Q-point could shift along the dc load line. Such problem is called Q-point shift. When an ac signal is injected to the base terminal, the resultant will be either saturated or cutoff. oltage-divider bias oltage-divider bias circuit is by far the most commonly used. Fig. 3(b) shows the circuit configuration. The analysis procedures are slightly different for different ratios between 2 and. ase 1: β From Fig. 3(b), we can formulate 2 = where is the voltage drop across 2. (1) The voltage of can be found as = = 0.7 (2) Using ohm s law, the emitter current can be obtained as I = (3) As mentioned before, I Q I I, Q can be found as = I ( + ) (4) Q Q It can be shown that the β term is not involved. That means, Q-point shift is no longer presence. -5-

6 hapter 9 - JT ipolar Junction Transistor ase 2: β alculate the parallel equivalent resistance from the base of the JT to ground. This resistance is found as eq 2 β = (5) Solve for the base voltage as follows: = 1 eq + eq (6) After solving for, substituting (6) into (2) to continue the sequence of calculations to find the values of I Q and Q. xample 1: onsider the circuit of Fig. 3(a), determine the Q-point values of I and when = 2kΩ, = 360kΩ, = 8 and β = 100. Solution: I can be found as I = (8 0.7) = 360kΩ = 20.28µ A Next, I is found as I = β I = µA = 2.028mA Finally, is found as = I = 8 (2.028mA)(2kΩ) = 3.94 The dc load line can be obtained as = I + 8 = 2000I + When I = 0, (off) = 8. When = 0, I (sat) = 8/2000 = 4mA. I (sat) = 4mA I I Q = 2.028mA I = 20µA Q = 3.94 (off) = 8-6-

7 hapter 9 - JT ipolar Junction Transistor xample 2: onsider the circuit of Fig. 3(b), determine the Q-point of I Q and Q when 1 = 18kΩ, 2 = 4.7kΩ, = 3kΩ, = 1.1kΩ, = 10, and β = 50. Solution: heck the value 2 and (0.1 β ), So, the base voltage can be found as kΩ = 5.5kΩ > 4.7kΩ = 10 = kΩ + 4.7kΩ 2 is found as I Q is then found as = = = 1.37 I Q = = kΩ = 1.25mA Q = I Q ( + ) = 10 (1.25mA)(4.1kΩ) = 4.87 The dc load line can be obtained as = I ( + ) + 10 = 4100I + When I = 0, (off) = 10. When = 0, I (sat) = 10/4100 = 2.44mA I (sat) =2.44 ma I I Q = 1.25 ma I = 25µA Q = 4.87 (off) = 10 xample 3: onsider the circuit of Fig. 3(b), determine the Q-point of I Q and Q when 1 = 68kΩ, 2 = 10kΩ, = 6.2kΩ, = 1.1kΩ, = 20, and β =

8 hapter 9 - JT ipolar Junction Transistor Solution: heck the value 2 and (0.1 β ), kΩ = 5.5kΩ < So, the equivalent resistance eq can be found as = β = (10kΩ) (55kΩ) = 8.46kΩ eq Then, can be found as 2 2 = eq + eq kΩ = 20 68kΩ kΩ = 2.21 is found as = = = 1.51 I Q is then found as I Q = = kΩ = 1.37mA Q = I Q ( + ) = 20 (1.37mA)(7.3kΩ) = 9.99 The equation of dc load line is When = 0, I (sat) = 2.74mA. When I = 0, (off) = Interfacing = 20 = + I ( I + ) Apart from the application of amplification, JT can be used as a ON/OFF switch. With the aid of dc load line, two phenomena can be observed: (1) If I = 0, I will be zero and will be equaled to. (2) If I is sufficient large, I will reach to its maximum value and will become zero. That means, if a JT is subject to a square pulse train with sufficient large in magnitude, the measurement of will be an inverted square pulse train. -8-

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208   Department of EECE lectronic ircuits Transistor Bias ircuits Manar Mohaisen Office: F208 mail: manar.subhi@kut.ac.kr Department of Review of the Precedent Lecture Bipolar Junction Transistor (BJT) BJT haracteristics and

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Transistors. Lesson #9 Chapter 4. BME 372 Electronics I J.Schesser

Transistors. Lesson #9 Chapter 4. BME 372 Electronics I J.Schesser Transistors Lesson #9 hapter 4 252 JT egions of Operation 7.03 6.03 5.03 4.03 3.03 2.03 1.03 0.00 Saturation Active i amps i =50 ma 40 ma 30 ma 20 ma 10 ma 0 ma 0 1 2 3 4 5 6 7 8 9 10 v volts utoff There

More information

assess the biasing requirements for transistor amplifiers

assess the biasing requirements for transistor amplifiers 1 INTODUTION In this lesson we examine the properties of the bipolar junction transistor (JT) amd its typical practical characteristics. We then go on to devise circuits in which we can take best advantage

More information

EE 330 Lecture 20. Bipolar Device Modeling

EE 330 Lecture 20. Bipolar Device Modeling 330 Lecture 20 ipolar Device Modeling xam 2 Friday March 9 xam 3 Friday April 13 Review from Last Lecture ipolar Transistors npn stack pnp stack ipolar Devices Show asic Symmetry lectrical Properties not

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Chapter 2 - DC Biasing - BJTs

Chapter 2 - DC Biasing - BJTs Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

Forward-Active Terminal Currents

Forward-Active Terminal Currents Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001 6.012 - Microelectronic Devices and ircuits - Spring 2001 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) Regimes of Operation April 19, 2001 ontents: 1. Regimes of operation. 2. Large-signal

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005 6.012 - Microelectronic Devices and ircuits - Fall 2005 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) ontents: 1. Regimes of operation. Regimes of Operation November 10, 2005 2. Large-signal

More information

EE 330 Lecture 31. Basic Amplifier Analysis High-Gain Amplifiers Current Source Biasing (just introduction)

EE 330 Lecture 31. Basic Amplifier Analysis High-Gain Amplifiers Current Source Biasing (just introduction) 330 Lecture 31 asic Amplifier Analysis High-Gain Amplifiers urrent Source iasing (just introduction) eview from Last Time ommon mitter onfiguration ommon mitter onsider the following application (this

More information

CHAPTER 13. Solutions for Exercises

CHAPTER 13. Solutions for Exercises HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln

More information

Section 5.4 BJT Circuits at DC

Section 5.4 BJT Circuits at DC 12/3/2004 section 5_4 JT Circuits at DC 1/1 Section 5.4 JT Circuits at DC Reading Assignment: pp. 421-436 To analyze a JT circuit, we follow the same boring procedure as always: ASSUME, ENFORCE, ANALYZE

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

S.E. Sem. III [ETRX] Electronic Circuits and Design I

S.E. Sem. III [ETRX] Electronic Circuits and Design I S.E. Sem. [ETRX] Electronic ircuits and Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1(a) What happens when diode is operated at high frequency? [5] Ans.: Diode High Frequency Model : This

More information

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Bipolar Junction Transistors Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of Precedent Class Explain the Operation of the Zener Diode Explain Applications

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C PNP Silicon Digital Transistor Switching circuit, inverter, interface circuit, driver circuit Built in bias resistor (R = kω, R = kω ) For 6PIN packages: two (galvanic) internal isolated transistors with

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

Chapter 13 Bipolar Junction Transistors

Chapter 13 Bipolar Junction Transistors Chapter 3 ipolar Junction Transistors Goal. ipolar Junction Transistor Operation in amplifier circuits. 2. Load-line Analysis & Nonlinear Distortion. 3. Large-signal equialent circuits to analyze JT circuits.

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Junction Bipolar Transistor. Characteristics Models Datasheet

Junction Bipolar Transistor. Characteristics Models Datasheet Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,

More information

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models LC 3908, Physical lectronics, Lecture 17 Bipolar Transistor njection Models Lecture Outline Last lecture looked at qualitative operation of the BJT, now want to develop a quantitative model to predict

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 The D bias point is affected by thermal issue due to the active device parameter variations with temperature I 1 I I 0 I [ma] V R } I 5 } I 4 } I 3 Q 2 } I 2 Q 1 } I

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

(e V BC/V T. α F I SE = α R I SC = I S (3)

(e V BC/V T. α F I SE = α R I SC = I S (3) Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also

More information

Small-Signal Midfrequency BJT Amplifiers

Small-Signal Midfrequency BJT Amplifiers Small-Signal Midfrequency JT Amplifiers 6.. INTRODUTION For sufficiently small emitter-collector voltage and current excursions about the quiescent point (small signals), the JT is considered linear; it

More information

A.M. WEDNESDAY, 13 May minutes

A.M. WEDNESDAY, 13 May minutes Candidate Name Centre Number Candidate Number 0 GCSE 293/02 ELECTRONICS MODULE TEST E1 HIGHER TIER AM WEDNESDAY, 13 May 2009 45 minutes For Examiner s use Total Mark ADDITIONAL MATERIALS In addition to

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Bipolar Junction Transistors: Solving Ebers-Moll Problems

Bipolar Junction Transistors: Solving Ebers-Moll Problems C 305: Fall 016 ipolar Junction Transistors: Solving bers-moll Problems Professor Peter ermel lectrical and Computer ngineering Purdue University, West Lafayette, N USA pbermel@purdue.edu Pierret, Semiconductor

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

CM600HX-12A. APPLICATION General purpose Inverters, Servo Amplifiers, Power supply, etc. CM600HX-12A. IC...600A VCES...600V Single

CM600HX-12A. APPLICATION General purpose Inverters, Servo Amplifiers, Power supply, etc. CM600HX-12A. IC...600A VCES...600V Single MHX-1A MHX-1A I...A S... Single Flatbase Type / Insulated Package / opper (non-plating) base plate RoHS Directive compliant APPLIATION General purpose Inverters, Servo Amplifiers, Power supply, etc. OUTLIN

More information

Type Marking Pin Configuration Package SMBT2222A/MMBT2222A s1p 1 = B 2 = E 3 = C SOT23

Type Marking Pin Configuration Package SMBT2222A/MMBT2222A s1p 1 = B 2 = E 3 = C SOT23 SMBTA/MMBTA NPN Silicon Switching Transistor Low collectoremitter saturation voltage omplementary type: SMBT97A / MMBT97A (PNP) 1 Pbfree (RoHS compliant) package Qualified according AE Q1 Type Marking

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and -Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

Chapter 3 Output stages

Chapter 3 Output stages Chapter 3 utput stages 3.. Goals and properties 3.. Goals and properties deliver power into the load with good efficacy and small power dissipate on the final transistors small output impedance maximum

More information

Type Marking Pin Configuration Package BCW66KF BCW66KG BCW66KH 1=B 1=B 1=B

Type Marking Pin Configuration Package BCW66KF BCW66KG BCW66KH 1=B 1=B 1=B NPN Silicon AF Transistors For general AF applications High current gain Low collectoremitter saturation voltage omplementary type: BW68 (PNP) Pbfree (RoHS compliant) package Qualified according AE Q Type

More information

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Mar 27 FEATURES Low current (max. 100 ma) Low voltage (max. 65 V). APPLICATIONS General purpose switching and amplification.

More information

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities: Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

More information

Type Marking Pin Configuration Package SMBT2907A/MMBT2907A s2f 1 = B 2 = E 3 = C SOT23

Type Marking Pin Configuration Package SMBT2907A/MMBT2907A s2f 1 = B 2 = E 3 = C SOT23 PNP Silicon Switching Transistor Low collectoremitter saturation voltage omplementary type: SMBTA / MMBTA (NPN) 1 Pbfree (RoHS compliant) package 1) Qualified according AE Q1 Type Marking Pin onfiguration

More information

Lecture 27: Introduction to Bipolar Transistors

Lecture 27: Introduction to Bipolar Transistors NCN www.nanohub.org ECE606: Solid State Devices Lecture 27: Introduction to ipolar Transistors Muhammad Ashraful Alam alam@purdue.edu Alam ECE 606 S09 1 ackground E C E C ase! Point contact Germanium transistor

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

DATA SHEET. BC556; BC557 PNP general purpose transistors. technický list DISCRETE SEMICONDUCTORS Apr 15

DATA SHEET. BC556; BC557 PNP general purpose transistors. technický list DISCRETE SEMICONDUCTORS Apr 15 DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Mar 27 1999 Apr 15 str 1 FEATURES Low current (max. 100 ma) Low voltage (max. 65 V). APPLICATIONS General purpose switching

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009 Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

More information

They keep the voltage the same and use this circuit to measure the current. Variable resistor. Reading on ammeter in amps

They keep the voltage the same and use this circuit to measure the current. Variable resistor. Reading on ammeter in amps 1 Ksenia and Eva investigate five different variable resistors. They set each variable resistor to the maximum resistance. They keep the voltage the same and use this circuit to measure the current. A

More information

Class AB Output Stage

Class AB Output Stage Class AB Output Stage Class AB amplifier Operation Multisim Simulation - VTC Class AB amplifier biasing Widlar current source Multisim Simulation - Biasing 1 Class AB Operation v I V B (set by V B ) Basic

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

EE 330 Lecture 30. Basic amplifier architectures

EE 330 Lecture 30. Basic amplifier architectures 33 Lecture 3 asic aplifier architectures asic plifier Structures MOS and ipolar Transistors oth have 3 priary terinals MOS transistor has a fourth terinal that is generally considered a parasitic D terinal

More information

ECE-305: Spring 2018 Final Exam Review

ECE-305: Spring 2018 Final Exam Review C-305: Spring 2018 Final xam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapters 10 and 11 (pp. 371-385, 389-403) Professor Peter Bermel lectrical and Computer ngineering Purdue University,

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate

EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate 33 Lecture 3 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate eview fro arlier Lecture Two-port representation of aplifiers plifiers can be odeled as a two-port y 2 2 y y 22

More information

CM600HG-130H HIGH POWER SWITCHING USE 3rd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

CM600HG-130H HIGH POWER SWITCHING USE 3rd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules M6HG-1H rd-ersion M6HG-1H I...6 A S... 6 High Insulated Type 1-element in a Pack AISi Baseplate APPLIATION Traction drives, High Reliability onverters / Inverters, D choppers OUTLIN DRAWING & IRUIT DIAGRAM

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2 Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:00-11:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

W - DIA. (4 TYP.) AE AG AH AJ R

W - DIA. (4 TYP.) AE AG AH AJ R M6HA-2A Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (72) 925-7272 www.pwrx.com Single IGBT A-Series Module 6 Amperes/12 Volts H G F D K J W - DIA. ( TYP.) AF A AG Y X Y Z G AA K B A

More information

Type Marking Pin Configuration Package BFN27 FLs 1=B 2=E 3=C SOT23

Type Marking Pin Configuration Package BFN27 FLs 1=B 2=E 3=C SOT23 PNP Silicon HighVoltage Transistors Suitable for video output stages in TV sets and switching power supplies High breakdown voltage 2 Low collectoremitter saturation voltage omplementary types: BFN26 (NPN)

More information

Type Marking Pin Configuration Package BCW66F BCW66KF* BCW66G BCW66KG* BCW66H BCW66KH* 1=B 1=B 1=B 1=B 1=B 1=B

Type Marking Pin Configuration Package BCW66F BCW66KF* BCW66G BCW66KG* BCW66H BCW66KH* 1=B 1=B 1=B 1=B 1=B 1=B NPN Silicon AF Transistors For general AF applications High current gain Low collectoremitter saturation voltage omplementary type: BW68 (PNP) Pbfree (RoHS compliant) package ) Qualified according AE Q

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

B C E. absolute maximum ratings at 25 C ambient temperature (unless otherwise noted )

B C E. absolute maximum ratings at 25 C ambient temperature (unless otherwise noted ) Designed Specifically for High Frequency Electronic Ballasts up to 5 W h FE 6 to at = V, = A Low Power Losses (On-state and Switching) Key Parameters Characterised at High Temperature Tight and Reproducible

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

DETAIL "A" #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL "A"

DETAIL A #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL A MG6Q2YS6A Powerex, Inc., 2 E. Hillis Street, Youngwood, Pennsylvania 15697-1 (72) 925-7272 Compact IGBT Series Module 6 Amperes/ olts A D H J K DETAIL "A" C2E1 E2 C1 B E F W M F Outline Drawing and Circuit

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

Type Marking Pin Configuration Package BCX42 BSS63 1 = B 1 = B 2 = E 2 = E

Type Marking Pin Configuration Package BCX42 BSS63 1 = B 1 = B 2 = E 2 = E , PNP Silicon AF an Swiching Transistors For general AF applications High breakdown voltage Low collectoremitter saturation voltage Complementary types: BCX4, BSS64 (NPN) VPS6 Type Marking Pin Configuration

More information

SMBT MMBT3906 SMBT3906S/U. Type Marking Pin Configuration Package SMBT3906S SMBT3906U

SMBT MMBT3906 SMBT3906S/U. Type Marking Pin Configuration Package SMBT3906S SMBT3906U PNP Silicon Switching Transistors High D current gain:. ma to ma Low collectoremitter saturation voltage For SMBT96S and SMBT96U: Two (galvanic) internal isolated transistor with good matching in one package

More information

1.7 Delta-Star Transformation

1.7 Delta-Star Transformation S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

Switching Regulators MC33063A SOP

Switching Regulators MC33063A SOP MC0A Features Operation from.0 to 0 Input Low Standby Current Current Limiting Output oltage Adjustable Frequency Operation to 00 khz Pb Free Packages are Available Output Current to. A SOP- 0. 0.0-0.0.0

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

Characteristic Symbol Value Unit Output Current I out 150 ma

Characteristic Symbol Value Unit Output Current I out 150 ma LBNB ma LOAD SWITH FEATURING OMPLEMENTARY BIPOLAR TRANSISTORS NEW PRODUT General Description LMNB is best suited for applications where the load needs to be turned on and off using control circuits like

More information