Bipolar Junction Transistors

Size: px
Start display at page:

Download "Bipolar Junction Transistors"

Transcription

1 ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace. JTs are still preferred i some high frequecy ad aalog applicatios because of their high speed ad high power output. Questio: What is the meaig of bipolar? The term bipolar refers to the fact that both electros ad holes are ivolved i the operatio of a JT. fact, miority carrier diffusio plays the leadig role just as i the P juctio diode. The word juctio refers to the fact that P juctios are critical to the operatio of the JT (ipolar) Trasistors (bipolar) trasistor = combiatio of two diodes that share middle portio, called base of trasistor; other two sectios: emitter'' ad collector ; usually, base is very thi ad lightly doped. Two kids of bipolar trasistors: pp ad p trasistors pp meas emitter is p type, base is type, ad collector is p type material; i ormal operatio of pp trasistor, apply positive voltage to emitter, egative voltage to collector; p pp

2 . troductio to the JT A JT is made of a heavily doped type emitter, a P type base, ad a type collector. This device is a P JT. (A PP JT would have a P+ emitter, type base, ad P type collector.) P trasistors exhibit higher trascoductace ad speed tha PP trasistors because the electro mobility is larger tha the hole mobility. forward reverse Whe the base emitter juctio is forward biased, electros are ijected ito the more lightly doped base. They diffuse across the base to the reverse biased base collector juctio ad get swept ito the collector. This produces a collector curret,. is idepedet of V as log as V is a reverse bias. Rather, is determied by the rate of electro ijectio from the emitter ito the base, i.e., determied by V. Similar to the P diode theory, the rate of ijectio is proportioal to exp(qv KT). (ipolar) Trasistors or pp(p), if emitter base juctio is forward biased, holes (electros) flow from battery ito emitter, move ito base; some holes(electro) aihilate with electros(hole)s i type(ptype) base. ecause base is thi ad lightly doped, most holes(electros)makeitthroughbaseito collector, holes(electros) move through collector ito egative (positive) termial of battery. Accordigly, collector curret flows whose size depeds o how may holes(electros) have bee captured by electros(holes) i the base. This depeds o the umber of type(p type) carriers i the base which ca be cotrolled by the size of the curret (the base curret ) that is allowed to flow from the base to the emitter. The base curret is usually very small; small chages i the base curret ca cause a big differece i the collector curret. curret holes curret electros forward reverse forward reverse ( 참고 ) 베이스공통회로 ommo ase

3 The emitter is ofte coected to groud. Therefore, the curve is usually plotted agaist V. or V higher tha about.3 V, ig.(b) is with a shift to the right because V = V + V elow V.3 V, the base collector juctio is strogly forward biased ad decreases. ommo-mitter ofiguratio ecause of the parasitic R drops, it is difficult to accurately ascertai the true base emitter juctio voltage. or this reaso, the easily measurable base curret,, is commoly used as the variable parameter i lieu of V Questio: Why is ofte preferred as a parameter over V?. ollector urret The collector curret is the output curret of a JT. Applyig the electro diffusio equatio to the base regio d dx L where, L () t : base recombiatio lifetime : base miority carrier (electro) diffusio costat The boudary coditios are () qv ( e ) qv ( W ) ) () where = i, ad is the base dopig cocetratio. V is ormally a forward bias (positive value) ad V is a reverse bias (egative value). The solutio of q. () is ( x) qv W x sih L ) sih W L (3)

4 . ollector urret Moder JTs have base widths of about. μm. This is much smaller tha the typical diffusio legth of tes of micros. the case of W << L, q. (3) reduces to a straight lie W x sih ( x) ()( x W ) qv kt L ( x) ( e ) i qv sihw L )( x W ) Where i is the itrisic carrier cocetratio of the base material. (4) The miority carrier curret is domiated by the diffusio curret. The sig of is positive. A q d dx A q W i qv ) (5) A is the emitter area of the JT. otice the similarity betwee q. (5) ad the P diode V relatio. oth are proportioal to ad to i. fact, the oly differece is that d'dx has produced the W term i q. (5) due to the liear ' profile. quatio (5) ca be codesed to S A q qv i ) where S is the saturatio curret. quatio (5) ca be rewritte as qv ) W i (6) i p dx (s cm 4 ) is the base ummel umber where p is the majority carrier cocetratio i the base. 8.3 ase urret Wheever the base emitter juctio is forward biased, some holes are ijected from the P type base ito the + emitter. These holes are provided by the base curret,. is a udesirable but ievitable side effect of producig by forward biasig the juctio. At a ideal ohmic cotact such as the cotact of the emitter, the equilibrium coditio holds ad p' = similar to q. (). Aalogous to q. (6), the base curret ca be expressed as A W q i i i qv dx ) (7) where i, (emitter dopig cocetratio) ad are ot fuctios of x A q W i qv ) (8) (b) s a large desirable? Why?

5 8.4 urret ai How ca be maximized? i i W W Perhaps the most importat parameter of a JT is its commo emitter curret gai, β. Aother curret ratio, the commo base curret gai, is defied by α is typically very close to uity, such as.99, because β is large. is a load o the iput sigal source, a udesirable side effect of forward biasig the juctio. should be miimized (i.e., β should be maximized). (9) () () () (6)(7) (9) XAMPL: urret ai A JT has = ma ad = ma. What are, b ad a? Solutio:.99 ma.ma ma μa. ma μa ma We ca cofirm ad

6 (ipolar) Trasistors Amplifier of base curret : small chages i base curret cause big chages i collector curret. Switch: if voltage applied to base is such that emitter base juctio is reverse biased, o curret flows through trasistor, i.e., trasistor is off. Therefore, a trasistor ca be used as a voltage cotrolled switch. : 베이스공통단락회로증폭인자 (commo base short circuit amplificatio factor) : =.95 ~.99 (always, < ) ad ac ac V costat : 이미터공통순방향전류증폭률 (commo emitter forwarurret amplificatio factor) : = ~ or larger. V costat curret coservatio ( ) & O, O ( ) haracteristics of ipolar Trasistors V R V R V V Saturatio regio Active regio reakdow regio utoff regio ase mitter Voltage(forward): V.7V VoltageatR :V R =V V Ohm s law for R :V R = R the, R =V V =(V V )R or, ollector mitter voltage V V V R Ohm s law for R :V R = R the, V =V R (where, = β ) ollector ase voltage : V =V V

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Techologies ecture-17 Prof. C.S. Solaki Eergy Systems Egieerig T Bombay ecture-17 Cotets Brief summary of the revious lecture Total curret i diode: Quatitative aalysis Carrier flow uder

More information

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor Lecture 5: HT C Properties asic operatio of a (Heterojuctio) ipolar Trasistor Abrupt ad graded juctios ase curret compoets Quasi-Electric Field Readig Guide: 143-16: 17-177 1 P p ++.53 Ga.47 As.53 Ga.47

More information

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is: Semicoductor evices Prof. Rb Robert tat A. Taylor The aim of the course is to give a itroductio to semicoductor device physics. The syllabus for the course is: Simple treatmet of p- juctio, p- ad p-i-

More information

Introduction to Microelectronics

Introduction to Microelectronics The iolar Juctio Trasistor Physical Structure of the iolar Trasistor Oeratio of the NPN Trasistor i the Active Mode Trasit Time ad Diffusio aacitace Ijectio fficiecy ad ase Trasort Factor The bers-moll

More information

1. pn junction under bias 2. I-Vcharacteristics

1. pn junction under bias 2. I-Vcharacteristics Lecture 10 The p Juctio (II) 1 Cotets 1. p juctio uder bias 2. I-Vcharacteristics 2 Key questios Why does the p juctio diode exhibit curret rectificatio? Why does the juctio curret i forward bias icrease

More information

Lecture 10: P-N Diodes. Announcements

Lecture 10: P-N Diodes. Announcements EECS 15 Sprig 4, Lecture 1 Lecture 1: P-N Diodes EECS 15 Sprig 4, Lecture 1 Aoucemets The Thursday lab sectio will be moved a hour later startig this week, so that the TA s ca atted lecture i aother class

More information

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T SOUIONS: ECE 606 Homework Week 7 Mark udstrom Purdue Uiversity (revised 3/27/13) 1) Cosider a - type semicoductor for which the oly states i the badgap are door levels (i.e. ( E = E D ). Begi with the

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

Transistors - CPE213 - [4] Bipolar Junction Transistors. Bipolar Junction Transistors (BJTs) Modes of Operation

Transistors - CPE213 - [4] Bipolar Junction Transistors. Bipolar Junction Transistors (BJTs) Modes of Operation P1 lectroic evices for omuter gieerig [4] iolar Juctio Trasistors Trasistors Threetermial device otrolled source Fuctios Amlificatio Switchig Tyes iolar juctio trasistor (JT) Field effect trasistor (FT)

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Quiz #3 Practice Problem Set

Quiz #3 Practice Problem Set Name: Studet Number: ELEC 3908 Physical Electroics Quiz #3 Practice Problem Set? Miutes March 11, 2016 - No aids excet a o-rogrammable calculator - ll questios must be aswered - ll questios have equal

More information

Schottky diodes: I-V characteristics

Schottky diodes: I-V characteristics chottky diodes: - characteristics The geeral shape of the - curve i the M (-type) diode are very similar to that i the p + diode. However the domiat curret compoets are decidedly differet i the two diodes.

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities. Diffusio of Carriers Wheever there is a cocetratio gradiet of mobile articles, they will diffuse from the regios of high cocetratio to the regios of low cocetratio, due to the radom motio. The diffusio

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Heterojunctions. Heterojunctions

Heterojunctions. Heterojunctions Heterojuctios Heterojuctios Heterojuctio biolar trasistor SiGe GaAs 4 96, 007-008, Ch. 9 3 Defiitios eφ s eχ s lemet Ge, germaium lectro affiity, χ (ev) 4.13 Si, silico 4.01 GaAs, gallium arseide 4.07

More information

Introduction to Solid State Physics

Introduction to Solid State Physics Itroductio to Solid State Physics Class: Itegrated Photoic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Mig-Chag Lee) Electros i A Atom Electros i A Atom Electros i Two atoms

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction EE105 Fall 015 Microelectroic Devices ad Circuits Prof. Mig C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH 6-1 Juctio -tye semicoductor i cotact with -tye Basic buildig blocks of semicoductor devices

More information

Overview of Silicon p-n Junctions

Overview of Silicon p-n Junctions Overview of Silico - Juctios r. avid W. Graham West irgiia Uiversity Lae eartmet of omuter Sciece ad Electrical Egieerig 9 avid W. Graham 1 - Juctios (iodes) - Juctios (iodes) Fudametal semicoductor device

More information

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design 606: Solid State Devices Lecture 9 ipolar Trasistors Desig Gerhard Klimeck gekco@purdue.edu Outlie ) urret gai i JTs ) osideratios for base dopig 3) osideratios for collector dopig 4) termediate Summary

More information

FYS Vår 2016 (Kondenserte fasers fysikk)

FYS Vår 2016 (Kondenserte fasers fysikk) FYS3410 - Vår 2016 (Kodeserte fasers fysikk) http://www.uio.o/studier/emer/matat/fys/fys3410/v16/idex.html Pesum: Itroductio to Solid State Physics by Charles Kittel (Chapters 1-9 ad 17, 18, 20) Adrej

More information

Semiconductors a brief introduction

Semiconductors a brief introduction Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) 1.7-1.9 Trasport (drift-diffusio) Hyperphysics (lik o course homepage)

More information

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE Diode aalysis ad applicatios cotiued The MOFET The MOFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOFET Readig Howe

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg

More information

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5. 5.1 troductio 5.2 Equilibrium coditio 5.2.1 Cotact otetial 5.2.2 Equilibrium Fermi level 5.2.3 Sace charge at a juctio 5.3 Forward- ad Reverse-biased juctios; steady state coditios 5.3.1 Qualitative descritio

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310

More information

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain Parasitic Resistace G Polysilico gate rai cotact V GS,eff S R S R S, R S, R + R C rai Short Chael Effects Chael-egth Modulatio Equatio k ( V V ) GS T suggests that the trasistor i the saturatio mode acts

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

2.CMOS Transistor Theory

2.CMOS Transistor Theory CMOS LSI esig.cmos rasistor heory Fu yuzhuo School of microelectroics,sju Itroductio omar fadhil,baghdad outlie PN juctio priciple CMOS trasistor itroductio Ideal I- characteristics uder static coditios

More information

Nanostructured solar cell

Nanostructured solar cell aostructured solar cell bulk heterojuctio hybrid/dssc/dsh/et 3D cell e - coductor h + coductor TiO dye or Ps h + coductor TiO orgaic hybrid solar cell: polymer/dye/tio iorgaic polymer/polymer: MDMO-PPV/PCEPV

More information

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below. 9. Heterojuctios Semicoductor heterojuctios A heterojuctio cosists of two differet materials i electrical equilibrium separated by a iterface. There are various reasos these are eeded for solar cells:

More information

Nonequilibrium Excess Carriers in Semiconductors

Nonequilibrium Excess Carriers in Semiconductors Lecture 8 Semicoductor Physics VI Noequilibrium Excess Carriers i Semicoductors Noequilibrium coditios. Excess electros i the coductio bad ad excess holes i the valece bad Ambiolar trasort : Excess electros

More information

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19 ECEN 3250 Microelectroics Semicoductor Physics ad P/N juctios 2/05/19 Professor J. Gopiath Professor J. Gopiath Uiversity of Colorado at Boulder Microelectroics Sprig 2014 Overview Eergy bads Atomic eergy

More information

Semiconductors. PN junction. n- type

Semiconductors. PN junction. n- type Semicoductors. PN juctio We have reviously looked at the electroic roerties of itrisic, - tye ad - time semicoductors. Now we will look at what haes to the electroic structure ad macroscoic characteristics

More information

Electrical Resistance

Electrical Resistance Electrical Resistace I + V _ W Material with resistivity ρ t L Resistace R V I = L ρ Wt (Uit: ohms) where ρ is the electrical resistivity Addig parts/billio to parts/thousad of dopats to pure Si ca chage

More information

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells Photo-Voltaics ad Solar Cells this lecture you will lear: Photo-Voltaic Cells Carrier Trasort, Curret, ad Efficiecy Solar Cells Practical Photo-Voltaics ad Solar Cells ECE 407 Srig 009 Farha aa Corell

More information

Chapter 9 Bipolar Junction Transistor

Chapter 9 Bipolar Junction Transistor hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

Metal Gate. Insulator Semiconductor

Metal Gate. Insulator Semiconductor MO Capacitor MO Metal- Oxide- emicoductor MO actually refers to Metal ilico Diide ilico Other material systems have similar MI structures formed by Metal Isulator emicoductor The capacitor itself forms

More information

Monolithic semiconductor technology

Monolithic semiconductor technology Moolithic semicoductor techology 1 Ageda Semicoductor techology: Backgroud o Silico ad Gallium Arseide (GaAs) roerties. Diode, BJT ad FET devices. Secod order effect ad High frequecy roerties. Modelig

More information

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices 254 IEEE RANSACIONS ON ELECRON DEVICES, VOL. 46, NO. 1, JANUARY 1999 emperature-depedet Kik Effect Model for Partially-Depleted SOI NMOS Devices S. C. Li ad J. B. Kuo Abstract his paper reports a closed-form

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

Intrinsic Carrier Concentration

Intrinsic Carrier Concentration Itrisic Carrier Cocetratio I. Defiitio Itrisic semicoductor: A semicoductor material with o dopats. It electrical characteristics such as cocetratio of charge carriers, deped oly o pure crystal. II. To

More information

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design MOS Digital Itegrated ircuits Aalysis ad Desig hapter 9 Dyamic Logic ircuits 1 Itroductio Static logic circuit Output correspodig to the iput voltage after a certai time delay Preservig its output level

More information

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D / juctio Isolated, regios: o electric cotact, ot i equilibrium E vac E C E C E E F E i E i E F E E V E V / juctio I equilibrium, the Fermi level must be costat. Shift the eergy levels i ad regios u/dow

More information

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doped semicoductors: door impurities A silico lattice with a sigle impurity atom (Phosphorus, P) added. As compared to Si, the Phosphorus has oe extra valece electro which, after all bods are made, has

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells Photodiodes 1. Curret ad Voltae i a llumiated Juctio 2. olar Cells Diode Equatio D (e.) ( e qv / kt 1) V D o ( e qv / kt 1) Particle Flow uder Reversed Bias Particle Flow uder llumiatio W -tye -tye Otical

More information

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors EE3310 Class otes Part 3 Versio: Fall 2002 These class otes were origially based o the hadwritte otes of Larry Overzet. It is expected that they will be modified (improved?) as time goes o. This versio

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal

More information

The Bipolar Transistor

The Bipolar Transistor hater 2 The Biolar Trasistor hater 2 The Biolar Trasistor Bardee, Brattai ad Shockley develoed the Biolar Juctio Trasistor i 1947 at Bell Laboratories [1]. These researchers oticed that i certai exerimetal

More information

Semiconductor Electronic Devices

Semiconductor Electronic Devices Semicoductor lectroic evices Course Codes: 3 (UG) 818 (PG) Lecturer: Professor thoy O eill mail: athoy.oeill@cl.ac.uk ddress: 4.31, Merz Court ims: To provide a specialist kowledge of semicoductor devices.

More information

REQUIREMENTS FOR EFFICIENT TRANSISTOR OPERATION I B. Icn. I cp

REQUIREMENTS FOR EFFICIENT TRANSISTOR OPERATION I B. Icn. I cp RQURMNS FOR FFCN RANSSOR OPRAON r 1. AN so that the fudametal basis of trasistor atio, that of a urret otrolled by a small voltage flowig aross a large resistor to geerate a large voltage is maitaied.

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation. Saturatio Cosider the circuit below. We have see this oe already. As before, assume that the BJT is o ad i forward active operatio. VCC 0 V VBB ib RC 0 k! RB 3V 47 k! vbe ic vce βf 00. ( )( µ µ ). (. )(!!

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion ECE66: Solid State Devices Lecture 1 (from17) High Field, Mobility Hall Effect, Diffusio Gerhard Klimeck gekco@purdue.edu Outlie 1) High Field Mobility effects ) Measuremet of mobility 3) Hall Effect for

More information

Compact Modeling of Noise in the MOS Transistor

Compact Modeling of Noise in the MOS Transistor Compact Modelig of Noise i the MOS Trasistor Aada Roy, Christia Ez, ) Swiss Federal Istitute of Techology, ausae (EPF), Switzerlad ) Swiss Ceter for Electroics ad Microtechology (CSEM) Neuchâtel, Swtzerlad

More information

Chapter 3: Resistive Circuits

Chapter 3: Resistive Circuits Chapter 3: esistive Circuits KICHHOFF S LAWS Kirchhoff s laws are the goverig laws of electric circuits. All techiques are derived from Kirchhoff s laws (VD, CD, Node ad Mesh equatios) ad Ohm s law. I

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001 6.012 - Microelectronic Devices and ircuits - Spring 2001 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) Regimes of Operation April 19, 2001 ontents: 1. Regimes of operation. 2. Large-signal

More information

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io Chapter 9 - CD compaio CHAPTER NINE CD-9.2 CD-9.2. Stages With Voltage ad Curret Gai A Geeric Implemetatio; The Commo-Merge Amplifier The advaced method preseted i the text for approximatig cutoff frequecies

More information

The Scattering Matrix

The Scattering Matrix 2/23/7 The Scatterig Matrix 723 1/13 The Scatterig Matrix At low frequecies, we ca completely characterize a liear device or etwork usig a impedace matrix, which relates the currets ad voltages at each

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 006 Microelectroic Devices ad Circuits Prof. Ja M. Rabaey (ja@eecs) Lecture 3: Semicoductor Basics (ctd) Semicoductor Maufacturig Overview Last lecture Carrier velocity ad mobility Drift currets

More information

Lecture 3. Electron and Hole Transport in Semiconductors

Lecture 3. Electron and Hole Transport in Semiconductors Lecture 3 lectro ad Hole Trasort i Semicoductors I this lecture you will lear: How electros ad holes move i semicoductors Thermal motio of electros ad holes lectric curret via lectric curret via usio Semicoductor

More information

ECO 312 Fall 2013 Chris Sims LIKELIHOOD, POSTERIORS, DIAGNOSING NON-NORMALITY

ECO 312 Fall 2013 Chris Sims LIKELIHOOD, POSTERIORS, DIAGNOSING NON-NORMALITY ECO 312 Fall 2013 Chris Sims LIKELIHOOD, POSTERIORS, DIAGNOSING NON-NORMALITY (1) A distributio that allows asymmetry differet probabilities for egative ad positive outliers is the asymmetric double expoetial,

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005 6.012 - Microelectronic Devices and ircuits - Fall 2005 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) ontents: 1. Regimes of operation. Regimes of Operation November 10, 2005 2. Large-signal

More information

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Semiconductor Statistical Mechanics (Read Kittel Ch. 8) EE30 - Solid State Electroics Semicoductor Statistical Mechaics (Read Kittel Ch. 8) Coductio bad occupatio desity: f( E)gE ( ) de f(e) - occupatio probability - Fermi-Dirac fuctio: g(e) - desity of states

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

ECE 442. Spring, Lecture - 4

ECE 442. Spring, Lecture - 4 ECE 44 Power Semicoductor Devices ad Itegrated circuits Srig, 6 Uiversity of Illiois at Chicago Lecture - 4 ecombiatio, geeratio, ad cotiuity equatio 1. Geeratio thermal, electrical, otical. ecombiatio

More information

CUMULATIVE DAMAGE ESTIMATION USING WAVELET TRANSFORM OF STRUCTURAL RESPONSE

CUMULATIVE DAMAGE ESTIMATION USING WAVELET TRANSFORM OF STRUCTURAL RESPONSE CUMULATIVE DAMAGE ESTIMATION USING WAVELET TRANSFORM OF STRUCTURAL RESPONSE Ryutaro SEGAWA 1, Shizuo YAMAMOTO, Akira SONE 3 Ad Arata MASUDA 4 SUMMARY Durig a strog earthquake, the respose of a structure

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Crash course part 2. Frequency compensation

Crash course part 2. Frequency compensation Crash course part Frequecy compesatio Ageda Frequecy depedace Feedback amplifiers Frequecy depedace of the Trasistor Frequecy Compesatio Phatom Zero Examples Crash course part poles ad zeros I geeral a

More information

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

Nanomaterials for Photovoltaics (v11) 6. Homojunctions Naomaterials for Photovoltaics (v11) 1 6. Homojuctios / juctio diode The most imortat device cocet for the coversio of light ito electrical curret is the / juctio diode. We first cosider isolated ad regios

More information

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor C606: Solid State Devices Lecture 0 Heterojuctio ipolar Trasistor Gerhard Klimeck gekco@purdue.edu 1 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary

More information

Lecture #25. Amplifier Types

Lecture #25. Amplifier Types ecture #5 Midterm # formatio ate: Moday November 3 rd oics to be covered: caacitors ad iductors 1 st -order circuits (trasiet resose) semicoductor material roerties juctios & their alicatios MOSFEs; commo-source

More information

Finite Difference Derivations for Spreadsheet Modeling John C. Walton Modified: November 15, 2007 jcw

Finite Difference Derivations for Spreadsheet Modeling John C. Walton Modified: November 15, 2007 jcw Fiite Differece Derivatios for Spreadsheet Modelig Joh C. Walto Modified: November 15, 2007 jcw Figure 1. Suset with 11 swas o Little Platte Lake, Michiga. Page 1 Modificatio Date: November 15, 2007 Review

More information

Name Solutions to Test 2 October 14, 2015

Name Solutions to Test 2 October 14, 2015 Name Solutios to Test October 4, 05 This test cosists of three parts. Please ote that i parts II ad III, you ca skip oe questio of those offered. The equatios below may be helpful with some problems. Costats

More information

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models LC 3908, Physical lectronics, Lecture 17 Bipolar Transistor njection Models Lecture Outline Last lecture looked at qualitative operation of the BJT, now want to develop a quantitative model to predict

More information

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio Digital IC outlie CMOS at a glace CMOS static behavior

More information

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write:

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write: Siusoidal stimulus Si i Si at every ode! We are goig to aalyze circuits for a sigle siusoid at a time which we are goig to write: vi ( t i si( t + φ But we are goig to use expoetial otatio v ( t si( t

More information

Reliability and Queueing

Reliability and Queueing Copyright 999 Uiversity of Califoria Reliability ad Queueig by David G. Messerschmitt Supplemetary sectio for Uderstadig Networked Applicatios: A First Course, Morga Kaufma, 999. Copyright otice: Permissio

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Recombination on Locally Processed Wafer Surfaces

Recombination on Locally Processed Wafer Surfaces Vailable olie at www.sciecedirect.com Eergy Procedia 27 (2012 ) 259 266 SilicoPV: 17-20 April 2011, Freiburg, Germay Recombiatio o Locally Processed Wafer Surfaces P. Sait-Cast *, J. Nekarda, M. Hofma,

More information

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation.

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation. Review of Lecture Lecture / Trasistor fuctios: switchig ad modulatio. MOSFT 3 Si I 3 DD How voltage alied to Gate cotrols curret betwee Source ad Drai? 3 Source Gate Drai 3 oltage? urret? -Si Al -Si -Si*

More information

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010, 2007, 2004 Pearso Educatio, Ic. Comparig Two Proportios Read the first two paragraphs of pg 504. Comparisos betwee two percetages are much more commo

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 5-4 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig facts,

More information

Difference Equation Construction (1) ENGG 1203 Tutorial. Difference Equation Construction (2) Grow, baby, grow (1)

Difference Equation Construction (1) ENGG 1203 Tutorial. Difference Equation Construction (2) Grow, baby, grow (1) ENGG 03 Tutorial Differece Equatio Costructio () Systems ad Cotrol April Learig Objectives Differece Equatios Z-trasform Poles Ack.: MIT OCW 6.0, 6.003 Newto s law of coolig states that: The chage i a

More information

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions Faculty of Egieerig MCT242: Electroic Istrumetatio Lecture 2: Istrumetatio Defiitios Overview Measuremet Error Accuracy Precisio ad Mea Resolutio Mea Variace ad Stadard deviatio Fiesse Sesitivity Rage

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Digital Integrated Circuit Design

Digital Integrated Circuit Design Digital Itegrated Circuit Desig Lecture 4 PN Juctio -tye -tye Adib Abrishamifar EE Deartmet IUST Diffusio (Majority Carriers) Cotets PN Juctio Overview PN Juctios i Equilibrium Forward-biased PN Juctios

More information

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010 Pearso Educatio, Ic. Comparig Two Proportios Comparisos betwee two percetages are much more commo tha questios about isolated percetages. Ad they are more

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information