III-V Nanowire TFETs

Size: px
Start display at page:

Download "III-V Nanowire TFETs"

Transcription

1 III-V Nanowire TFETs Lars-Erik Wernersson Lund Univeristy, Sweden Final Workshop 10 November 2017 Energy Efficient Tunnel FET Switches and Circuits imec 1

2 OUTLINE Status of III-V NW TFETs TFET Variability and Statistics Where are the Defects? Band Tails: The Myth, the Data, and a Model Conclusions Final Workshop 10 November 2017 Energy Efficient Tunnel FET Switches and Circuits 2

3 TFET Process VLS growth combined with top-down processing Digital etching - ozone surface oxidation - citric acid oxide etching Diameter scaling down to 11 nm Typical diameter 20 nm

4 TFET characteristics TFET benefits Higher drive current at V overdrive Option for power saving! j

5 Transfer Characteristics Sub 60 mv/decade operation at I DS ~ na/µm Good electrostatic control (DIBL 25 mv/v), 5 mv Hysteresis Gate-current <I DS /100 S min = 48 mv/dec at 0.3 V I 60 = 0.31 μa/μm at 0.3 V E. Memisevic et al., IEDM 2016

6 Variability among Devices Transfer characteristics of 10 TFETs 6

7 Variability among Devices Transfer characteristics of 10 TFETs Adjust Vt Shift! 7

8 Variability among Devices Transfer characteristics of 10 TFETs Yield varies with bias and number of NWs Adjust Vt Shift! 8

9 What is limiting I on? At V ds =0.1V I on is limited by S At V ds =0.3V? 9

10 What is limiting I on? At V ds =0.1V I on is limited by S At V ds =0.3V I on is limited by g m 10

11 Materials Characterization Nanowire with WZ-ZB InAs transition Slowly varying composition gradient with transition over about 20 nm Strong strain field within heterostructure (2-3%) 28% Sb in InGaAsSb E. Memisevic et al., Nano Lett 2017

12 Where are the Defects? Excellent fit by TCAD modeling (ETH) Bulk trap main contribution to leakage current Oxide traps have vanishing influence besides electrostatic effect E. Memisevic et al., Nano Lett 2017

13 Defects within the Oxide Multiple jumps detected in some IVs E. Memisevic et al., Nano Letters 2017 M. Hellenbrand et al ESSDERC 2017 Each event can be viewed as RTN Time constants fit with model of defects within oxide

14 Band Tails: The Myth, the Data, and a Model Excess current in Esaki diodes have been described by: I D,off =κ 2q h න T r (E)(fd fs)exp( E ) de E c E 0 It has been suggested that Esaki diodes may be used to evaluate TFETs

15 Band Tails: The Myth, the Data, and a Model Excess current in Esaki diodes have been described by: I D,off =κ 2q h න E c T r (E)(fd fs)exp( E E 0 ) de It has been suggested that Esaki diodes may be used to evaluate TFETs Representative value for Lund TFET Note S<<E 0!!! E. Memisevic et al., IEEE EDL 2017

16 S<<E o!!! I D,off =κ 2q h න E c T r (E)(fd fs)exp( E E 0 ) de S=(dlog(ID,off )dvg) 1 =2.3 kte 0 kt+e C it C ox If E 0 <<kt; S proportional to E 0 If E 0 >kt; S proportional to kt, although lower than 2.3 kt!!!

17 Thermal Excitation of Carriers into States Representative value for Lund TFET Note S<<E 0!!! Note that the temperature dependence is back! TFET Esaki Diode

18 What about Doping in the Channel? Valley current increases E 0 increases (> 100 mev) Bias dependent E 0 S increases S min 77 mv/dec

19 What about Doping in the Channel? Valley current increases E 0 increases (> 100 mev) Bias dependent E 0 S increases S min 77 mv/dec Impurities: One source of band tails Binding energy<e 0 Potential screened by E f Lund Conclusion: p + /n + diodes not good references!

20 TFET Model Can Be Used to Describe IV! Esaki Diode I D,off =κ 2q h න E c T r (E)(fd fs)exp( E E 0 ) de

21 Same LFN Mechanism Same channel/gate stack for MOSFETs and TFETs Electron trapping in gate oxide defects Channel potential fluctuations as main LFN mechanism Channel e - S ID 2 I = q2 k T λ N bt S f γ 2 L G W G C ox g m 2 I S 2 = S V fb g2 m 2 I S Defect-assisted tunnelling high-k TFETs MOSFETs Hellenbrand et al. EDL 2017

22 Different Affected Areas Same mechanism but different affected areas Same S Vfb L G W G Hellenbrand et al. EDL 2017

23 Conclusions III-V NW TFETs consistently delivers S < 60 mv/dec I on = V I on limited by slope (low V ds ) and g m (high V ds ) I DS = 92 μa/μm at V DS = V GS = 0.5 V Peak transconductance g m of 205 μs/μm at V DS = 0.5 V Device not so sensitive to defects (charging, TAT, band tails) Band Tails: Now included in a model to describe IV! Final Workshop 10 November 2017 Energy Efficient Tunnel FET Switches and Circuits

24 Thank you LU Erik Lind, Johannes Svensson, Mattias Borg, Lars Ohlsson Elvedin Memisevic, Markus Hellenbrand, Abinaya Adam Jönsson, Karl-Magnus Persson, Jun Wu, Martin Berg, Anil Dey, Cezar Zota, Aein Shiribabadi, Fredrik Lindelöv, Olli-Pekka Kilpi, Sebastian Heunisch Final Workshop 10 November 2017 Energy Efficient Tunnel FET Switches and Circuits imec 24

Tunnel-FET: bridging the gap between prediction and experiment through calibration

Tunnel-FET: bridging the gap between prediction and experiment through calibration Tunnel-FET: bridging the gap between prediction and experiment through calibration Anne Verhulst Quentin Smets, Jasper Bizindavyi, Mazhar Mohammed, Devin Verreck, Salim El Kazzi, Alireza Alian, Yves Mols,

More information

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Quantum-size effects in sub-10 nm fin width InGaAs finfets Quantum-size effects in sub-10 nm fin width InGaAs finfets Alon Vardi, Xin Zhao, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 9, 2015 Sponsors: DTRA NSF (E3S STC) Northrop

More information

Ultra-Scaled InAs HEMTs

Ultra-Scaled InAs HEMTs Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim 2,3, Jesús. A. del Alamo 2, and Mathieu Luisier 1 1 Network for Computational ti Nanotechnology and Birck

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

Erik Lind

Erik Lind High-Speed Devices, 2011 Erik Lind (Erik.Lind@ftf.lth.se) Course consists of: 30 h Lectures (H322, and Fys B check schedule) 8h Excercises 2x2h+4h Lab Excercises (2 Computer simulations, 4 RF measurment

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 1 Analysis of Band-to-band Title of Talk Tunneling Structures Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 A Science & Technology Center Vertical Type-II TFET Structure

More information

Ultra-low-voltage bilayer graphene tunnel FET

Ultra-low-voltage bilayer graphene tunnel FET Ultra-low-voltage bilayer graphene tunnel FET 1 arxiv:0906.1254v1 [cond-mat.mes-hall] 6 Jun 2009 Gianluca Fiori, Giuseppe Iannaccone Dipartimento di Ingegneria dell Informazione : Elettronica, Informatica,

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications 30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications T.-W. Kim, D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout B.Doyle, J.Kavalieros, T. Linton, R.Rios B.Boyanov, S.Datta, M. Doczy, S.Hareland, B. Jin, R.Chau Logic Technology Development Intel

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor Low Frequency Noise in MoS Negative Capacitance Field-effect Transistor Sami Alghamdi, Mengwei Si, Lingming Yang, and Peide D. Ye* School of Electrical and Computer Engineering Purdue University West Lafayette,

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

The Prospects for III-Vs

The Prospects for III-Vs 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials

More information

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Center for High Performance Power Electronics Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Dr. Wu Lu (614-292-3462, lu.173@osu.edu) Dr. Siddharth Rajan

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Steep Slope Transistors beyond the Tunnel FET concept. David Esseni, University of Udine

Steep Slope Transistors beyond the Tunnel FET concept. David Esseni, University of Udine Steep Slope Transistors beyond the Tunnel FET concept David Esseni, University of Udine Overcome Boltzmann s Tyranny Sub-threshold swing may be expressed as V g = φ s V S/D G In MOSFETs: - second term

More information

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Jamie Teherani Collaborators: Paul Solomon (IBM), Mathieu Luisier(Purdue) Advisors: Judy Hoyt, DimitriAntoniadis

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails:

Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails: Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails: An atomistic mode space NEGF quantum transport study. A. Afzalian TSMC, Leuven, Belgium (Invited)

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

OFF-state TDDB in High-Voltage GaN MIS-HEMTs

OFF-state TDDB in High-Voltage GaN MIS-HEMTs OFF-state TDDB in High-Voltage GaN MIS-HEMTs Shireen Warnock and Jesús A. del Alamo Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT) Purpose Further understanding

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

Lecture 3: Transistor as an thermonic switch

Lecture 3: Transistor as an thermonic switch Lecture 3: Transistor as an thermonic switch 2016-01-21 Lecture 3, High Speed Devices 2016 1 Lecture 3: Transistors as an thermionic switch Reading Guide: 54-57 in Jena Transistor metrics Reservoir equilibrium

More information

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 28-1 Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007 Contents: 1. Second-order and

More information

V t vs. N A at Various T ox

V t vs. N A at Various T ox V t vs. N A at Various T ox Threshold Voltage, V t 0.9 0.8 0.7 0.6 0.5 0.4 T ox = 5.5 nm T ox = 5 nm T ox = 6 nm m = 4.35 ev, Q ox = 0; V sb = 0 V 0.3 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Body Doping, N

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Transistor Noise Lecture 14, High Speed Devices

Transistor Noise Lecture 14, High Speed Devices Transistor Noise 016-03-03 Lecture 14, High Speed Devices 016 1 Transistor Noise A very brief introduction 016-03-0 Lecture 13, High Speed Devices 016 Summary hybrid p Noise is a randomly varying voltage/current

More information

Carbon Nanotube Electronics

Carbon Nanotube Electronics Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J.

More information

AS MOSFETS reach nanometer dimensions, power consumption

AS MOSFETS reach nanometer dimensions, power consumption 1 Analytical Model for a Tunnel Field-Effect Transistor Abstract The tunnel field-effect transistor (TFET) is a promising candidate for the succession of the MOSFET at nanometer dimensions. Due to the

More information

Lecture 11: MOSFET Modeling

Lecture 11: MOSFET Modeling Digital Integrated Circuits (83-313) Lecture 11: MOSFET ing Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Analysis of Ultra-Scaled InAs HEMTs Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche Birck Nanotechnology Center and Purdue University,

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Time Dependent Dielectric Breakdown in High Voltage GaN MIS HEMTs: The Role of Temperature

Time Dependent Dielectric Breakdown in High Voltage GaN MIS HEMTs: The Role of Temperature Time Dependent Dielectric Breakdown in High Voltage GaN MIS HEMTs: The Role of Temperature Shireen Warnock, Allison Lemus, and Jesús A. del Alamo Microsystems Technology Laboratories (MTL) Massachusetts

More information

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Alon Vardi, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

Analysis of InAs Vertical and Lateral Band-to-Band Tunneling. Transistors: Leveraging Vertical Tunneling for Improved Performance

Analysis of InAs Vertical and Lateral Band-to-Band Tunneling. Transistors: Leveraging Vertical Tunneling for Improved Performance Analysis of InAs Vertical and Lateral Band-to-Band Tunneling Transistors: Leveraging Vertical Tunneling for Improved Performance Kartik Ganapathi, Youngki Yoon and Sayeef Salahuddin a) Department of Electrical

More information

Typical example of the FET: MEtal Semiconductor FET (MESFET)

Typical example of the FET: MEtal Semiconductor FET (MESFET) Typical example of the FET: MEtal Semiconductor FET (MESFET) Conducting channel (RED) is made of highly doped material. The electron concentration in the channel n = the donor impurity concentration N

More information

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) The Future of CMOS David Pulfrey 1 CHRONOLOGY of the FET 1933 Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) 1991 The most abundant object made by mankind (C.T. Sah) 2003 The 10 nm FET

More information

InGaAs Double-Gate Fin-Sidewall MOSFET

InGaAs Double-Gate Fin-Sidewall MOSFET InGaAs Double-Gate Fin-Sidewall MOSFET Alon Vardi, Xin Zhao and Jesús del Alamo Microsystems Technology Laboratories, MIT June 25, 214 Sponsors: Sematech, Technion-MIT Fellowship, and NSF E3S Center (#939514)

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

Negative Capacitance Tunnel Field Effect Transistor: A Novel Device with Low Subthreshold Swing and High ON Current

Negative Capacitance Tunnel Field Effect Transistor: A Novel Device with Low Subthreshold Swing and High ON Current Negative Capacitance Tunnel Field Effect Transistor: A Novel Device with Low Subthreshold Swing and High ON Current Nadim Chowdhury, S. M. Farhaduzzaman Azad and Quazi D.M. Khosru Department of Electrical

More information

Nanometer Transistors and Their Models. Jan M. Rabaey

Nanometer Transistors and Their Models. Jan M. Rabaey Nanometer Transistors and Their Models Jan M. Rabaey Chapter Outline Nanometer transistor behavior and models Sub-threshold currents and leakage Variability Device and technology innovations Nanometer

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET Lecture #23 arning for H Assignments and Exams: Make sure your writing is legible!! OUTLINE MOFET I s. V characteristic Circuit models for the MOFET resistie switch model small-signal model Reference Reading

More information

A Verilog-A Compact Model for Negative Capacitance FET

A Verilog-A Compact Model for Negative Capacitance FET A Verilog-A Compact Model for Negative Capacitance FET Version.. Muhammad Abdul Wahab and Muhammad Ashraful Alam Purdue University West Lafayette, IN 4797 Last Updated: Oct 2, 25 Table of Contents. Introduction...

More information

Journal of Engineering Science and Technology Review 8 (4) (2015) Research Article. Analytical Model of Symmetric Halo Doped DG-Tunnel FET

Journal of Engineering Science and Technology Review 8 (4) (2015) Research Article. Analytical Model of Symmetric Halo Doped DG-Tunnel FET Jestr Journal of Engineering Science and Technology Review 8 (4) (2015) 125-130 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Analytical Model of Symmetric Halo Doped

More information

Influence of structural and doping parameter variations on Si and Si 1 x Ge x double gate tunnel FETs: An analysis for RF performance enhancement

Influence of structural and doping parameter variations on Si and Si 1 x Ge x double gate tunnel FETs: An analysis for RF performance enhancement Pramana J. Phys. (2018) 91:2 https://doi.org/10.1007/s12043-018-1577-2 Indian Academy of Sciences Influence of structural and doping parameter variations on Si and Si 1 x Ge x double gate tunnel FETs:

More information

SILICON ON FERROELECTRIC INSULATOR FIELD EFFECT TRANSISTOR (SOFFET): A RADICAL ALTERNATIVE TO OVERCOME THE THERMIONIC LIMIT A DISSERTATION

SILICON ON FERROELECTRIC INSULATOR FIELD EFFECT TRANSISTOR (SOFFET): A RADICAL ALTERNATIVE TO OVERCOME THE THERMIONIC LIMIT A DISSERTATION SILICON ON FERROELECTRIC INSULATOR FIELD EFFECT TRANSISTOR (SOFFET): A RADICAL ALTERNATIVE TO OVERCOME THE THERMIONIC LIMIT A DISSERTATION IN Electrical and Computer Engineering & Physics Presented to

More information

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D.

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D. cw_kim@samsung.com Acknowledgements Collaboration Funding Outline Introduction Current research status Nano fabrication Process Nanoscale patterning SiN thin film Si Nanoparticle Nano devices Nanoscale

More information

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-18-28 OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices Mathieu Luisier

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Sub-Boltzmann Transistors with Piezoelectric Gate Barriers

Sub-Boltzmann Transistors with Piezoelectric Gate Barriers Sub-Boltzmann Transistors with Piezoelectric Gate Barriers Raj Jana, Gregory Snider, Debdeep Jena Electrical Engineering University of Notre Dame 29 Oct, 2013 rjana1@nd.edu Raj Jana, E3S 2013, Berkeley

More information

ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS

ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS Gerard Uriarte, Wondwosen E. Muhea, Benjamin Iñiguez Dep. of Electronic Engineering, University Rovira i Virgili, Tarragona (Spain) Thomas Gneiting AdMOS

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY T. Poiroux, P. Scheer*, O. Rozeau, B. de Salvo, A. Juge*, J. C. Barbé, M. Vinet CEA-Leti,

More information

Universal TFET model implementation in Verilog-A

Universal TFET model implementation in Verilog-A Universal TFET model implementation in Verilog-A Version 1.6.8, January 2015 Hao Lu*, Trond Ytterdal #, and Alan Seabaugh* *University of Notre Dame # Norwegian University of Science and Technology Table

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs 42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4,

More information

Long-channel MOSFET IV Corrections

Long-channel MOSFET IV Corrections Long-channel MOSFET IV orrections Three MITs of the Day The body ect and its influence on long-channel V th. Long-channel subthreshold conduction and control (subthreshold slope S) Scattering components

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

A 2D Analytical Investigation of Surface Potential and Electric Field for InSb based Triple Material Gate QWFET

A 2D Analytical Investigation of Surface Potential and Electric Field for InSb based Triple Material Gate QWFET A 2D Analytical Investigation of Surface Potential and Electric Field for InSb based Triple Material Gate QWFET C.Divya *1 N.Arumugam 2 B.Selva Karthick 3 J.Jagannathan 4 N.Krishnan 5 1Assistant Professor,

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

Vertical charge transfer and lateral transport in. graphene/germanium heterostructures

Vertical charge transfer and lateral transport in. graphene/germanium heterostructures Supporting Information Vertical charge transfer and lateral transport in graphene/germanium heterostructures Alireza Kazemi 1, 4, Sam Vaziri 2, Jorge Daniel Aguirre Morales 3, Sébastien Frégonèse 3, Francesca

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

WHILE science has good knowledge on the magnitude

WHILE science has good knowledge on the magnitude 1488 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 5, MAY 2014 Band-Edge Steepness Obtained From Esaki/Backward Diode Current Voltage Characteristics Sapan Agarwal, Member, IEEE, and Eli Yablonovitch,

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Available online at   ScienceDirect. Procedia Materials Science 11 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 11 (2015 ) 287 292 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15 Tunneling

More information

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport 2011 Workshop on Compact Modeling Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport Christian Enz 1,2, A. Mangla 2 and J.-M. Sallese 2 1) Swiss Center for Electronics

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information