Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails:

Size: px
Start display at page:

Download "Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails:"

Transcription

1 Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails: An atomistic mode space NEGF quantum transport study. A. Afzalian TSMC, Leuven, Belgium (Invited) A. Afzalian 1

2 Outline Motivations Mode Space approach for full band atomistic simulation Scaling perspective for ideal III-V broken gap nanowire TFETs Impact of phonon scattering and impurity band tails Conclusions A. Afzalian 2

3 Concept Availability of carrier filtering through BTBT Benefits Why III-V NW GAA Heterojunction TFETs (HTFETs)? Homojunction TFET Steep swing for low power (LP) operation (V DD < 0.5V) S ON-state Long L tunneling Low I ON D Broken gap III-V heterojunction TFET (HTFET): High I ON S InAs/GaSb ON-state Short L tunneling High I ON D Challenges Low I ON due to BTBT in the path of the current) High Quality material, interface, and d scaling for SS < 60 and low leakage IEDM 2016 Scaled d: Key for improved electrostatic control and SS 3

4 Experimental III-V NW HTFETs On-Current I on ( A/ m) InAs/GaSb V DD = 0.3 V [3] [4] n-tfet I off = 100 na/ m [1] InGaAs/InAs V DD = 0.5 V InA s/ Si V DD = 1 V GaAsSb/InGaAs V DD = 0.2 V [2] InAs/GaSb V DD = 0.3 V Junction Size (nm) [5] [1] Memisevic, IEEE EDL 2016 [2] Dey, IEEE EDL, 2013 [3] Tomioka, VLSI Symp, 2012 [4] Fujimatsu, IPRM, 2012 [5] Zhao, IEDM, 2014 trends of improved I ON with d scaling sub 10 nm wires? III-V ptfet? 4

5 Computational challenge to assess performances of sub 10 nm III-V NW HTFETs d 6 scaling d 4 scaling BTBT + quantum confinement + heterojunction : Most expansive full band (e.g. Tight binding) quantum transport (e.g. NEGF) models NW: Full 3D simulation (3D geometry) (NW GAA (3D) time/iv 100 planar DG (2D) 5

6 Mode Space approach for full band atomistic simulation A. Afzalian et al. IEDM speedup <<d 6 scaling <RAM/10 <<d 4 scaling BTBT: Most expansive full band (e.g. Tight binding) quantum transport (e.g. NEGF) models Full 3D simulation (3D geometry) We have developed an efficient, accurate and innovative full-band mode space (MS) NEGF technique 6

7 Accuracy of Atomistic Mode Space (MS) technique A. Afzalian et al. VLSI-TSA 2016 (invited) 10 orbitals/atom MS vs. RS GaSb source InAs channel d = 5.45 nm InAs drain RS MS InAs / GaSb NW TFET [100] InAs/GaSb NW HTFET with > atoms MS Speed up >150 Error <1% A. Afzalian 7

8 MS principle: Hamiltonian (H) size reduction by an incomplete basis transformation Reducing H size means loss of information Equivalent in a desired (smaller) energy range E-k points sampling to construct the MS basis (o) BS obtained using optimized MS basis ( ) vs. RS basis [100] InAs NW slab, d = 5.45 nm, sp 3 s * _so) MS H size is 5% of RS one Blue: Full Model (Real space (RS)) Red: reduced rank Model (Mode space (MS)) A. Afzalian et al. IWCE

9 Unphysical branches Problem with MS Tight-binding (TB) Traditional effective masslike MS basis Optimized MS basis ok (A. Afzalian et al. IWCE 2015) Tailor extra basis vectors* MS Speed up >150 Error <1% Blue: Full Model (Real space (RS)) Red: reduced rank Model (Mode space (MS)) This study: >50 MS bases, speedup up to 10,000 *Mil nikov et al.,prb 85, (2012), A. Afzalian et al. arxiv: [cond-mat.mes-hall] (2017) 9

10 Reduction ratio (r) vs d Initial InAs MS bases d = 5.45 nm d = 18.2 nm Averaged r vs. d InAs/GaSb NW ntfet sp 3 s * SO Optimized InAs MS bases d = 5.45 nm d = 18.2 nm N atoms d 2 n modes << d 2 r=5% r= 1% # of UM s and challenge to clean MS bases: d r and speed up improves with d (A. Afzalian et al. arxiv: [cond-mat.mes-hall] (2017))

11 MS performances vs. d (A. Afzalian et al. SSDM 2017, invited, A. Afzalian et al. arxiv: [cond-mat.mes-hall] (2017)) InAs-GaSb NW ntfet speedup d = 18.2 nm atoms!! <<d 6 scaling sp 3 s * _so d = 5.5 nm atoms RAM/100 <<d 4 scaling r and MS performances d MS enabled d, #atoms NW ever atomistically simulated.

12 Validation to fabricated III-V InAs NW MOSFET: (A. Afzalian et al. SSDM 2017, invited, A. Afzalian et al. arxiv: [cond-mat.mes-hall] (2017)) [100] d = 5.5 nm. L = 15 nm. [111] d =12 nm. L = 300 nm. sp 3 s*_so basis MOCVD grown InAs wire (T. Vasen et al. VLSI 2016) (a) (b) S InAs NW Gate D V D = 0.5V InAs NWs InAs Sub. (c) SiO 2 Back-Gate GAA Flow NW Growth High-k ALD Gate Metal Sputter NW Transfer to SiO 2 sub S/D Litho Gate Metal Wet Etch High-k Etch S/D Deposition + Liftoff Gate Pad Litho+Dep.+Liftoff Post Metallization Anneal Good Match with measured BTBT current Ballistic ratio (d) of 75% Support experimental program development

13 Scaling perspective for III-V broken gap nanowire TFETs 13

14 Simulated ideal (n)tfet devices: For each L, optimization on d, channel orientation, doping profiles, pockets, drain underlap Channel orientation:[100], [110], [111] d = 4 7 nm InAs I - channel InAs N + Drain N D ~1-10x10 18 cm -3 P GaSb P + Source N S N I Underlap (I) L UND N InAs N+ Pocket N P, L P Perf. boost: 2-3 Gate length L = nm Gate oxide nm of Al 2 O 3 EOT planar 0.7 nm, Dit=0 Tight Binding basis = sp 3 s* with SO (SO: spin orbit coupling, 10 orbitals /atom) 14

15 Optimized LP GAA NW InAs/GaSb TFETs vs. Si nmosfet ntfet TFET: V DD =0.3V MOSFET: V DD =0.45V ptfet Si nmos For each L, optimization on d, channel orientation, doping profiles, pockets, drain underlap. TFET performance degrades quickly for L < 20 nm A. Afzalian et al. IEDM

16 Strong TFET performance degradation with L: Short channel effects: ntfet TFET: V DD =0.3V MOSFET: V DD =0.45V ptfet Si nmos For each L, full optimization 1) Increased Source-to-drain tunneling (SDT) at shorter L reduces design window (channel orientation,drain doping) 16

17 E (ev) Source to drain tunneling (SDT) Optimized [100] ntfets ntfet, L = 12 G = 70 mv SDT degrades SS I ON E V-GaSb J(E) [A/eV] SS x (nm) SDT degrades TFET performances (SS -> I ON ) for L 20 nm Mitigation: L eff ( N D, underlap) 17

18 SDT vs. channel orientation: ntfet L = 20 nm: less SDT L = 12 nm: more SDT SDT [111]/[110]: T ON (Smaller E geff, lower m*) +50% I ON at L=20nm [100] : less SDT, but T ON : best at L = 12 nm A. Afzalian 18

19 SDT vs. channel orientation: ptfet L = 20 nm L = 12 nm [111]: best performance (+ 30% I ON ) at L = 20 nm [100] : best at L = 12 nm A. Afzalian 19

20 Drain engineering: trade-off *A. Afzalian et al. VLSI-TSA 2016 (invited), A. Afzalian et al. arxiv: [cond-mat.mes-hall] (2017) Balanced N D and optimized drain underlap for maximizing I ON at a given V D (V DD ) and I OFF spec. OFF leakage improves with N D ON current improves with N D Physical limiting mechanisms: Ambipolar current, SDT Physical limiting mechanism: on-current saturation A. Afzalian 20

21 E (ev) E (ev) Drain engineering: on-current saturation* *A. Afzalian et al. VLSI-TSA 2016 (invited), A. Afzalian et al. arxiv: [cond-mat.mes-hall] (2017) N D = 5x10 18 V G = 0.45 V N D = 1x10 18 E Fs E Cch DV G N D = 1x10 18 E Cd E Fd V D = 0.35 V E Cs x (nm) V G = 0.35 V 21 I ON saturates as Tunneling windows does not increase with V G : Max. windows is E Fs E Fd = V D (ev) smaller if S or D band edges are non-degenerated (e.g. N D is too low) E Fs E Vs E Cch E Vch x (nm) N D = 1x10 18 E Fd 5x10 18

22 Optimal doping vs. DD = 0.3V n, L =20 [100] n, L =12 p, L =20 SDT/I ON sat p, L =12 Increased SDT at L = 12 nm reduces optimal drain doping penalty on I ON : Ptfet is most affected: VB-DoS D I ON saturation 22

23 Strong TFET performance degradation with L: Short channel effects: d = 5.5 d = 6.5 Si nmos d = 5.5 d = 5.5 d = 5.5 Optimal d [nm] 2) d scaling below ~5.5 nm is not effective for TFET (especially for ptfet) 23

24 ptfet Optimally balanced InAs/GaSb TFET transport ~5.5 nm L = 20 nm L = 12 nm [100], [111] d : SS ( Electrostatic control, m*, DoS, E geff ) d : on-regime : Area, T ON ( m*, E Geff ), I ON saturation (DoS D ) Optimal performances at d ~ 5.5 nm both for L = 20 and 12 nm 24

25 Energy delay LP benchmark I OFF = 50 pa/ m p n p L = 20Si V DD = 0.5 V V DD = 0.3 V L = 20 L = 12 Si Including extrinsic of an unloaded inverter cell with 3 NW/device 25

26 Impact of Fundamental sources of non-idealities: A. Afzalian 26

27 TFET: Electron-Phonon scattering: e-ph scattering is an intrinsic/ fundamental source of non ideality. Inelastic collisions may strongly degrade TFET BTBT filtering action What is the impact on SS and I ON? Strong inelastic coupling ( 5) Ballistic (close to onset) J(E) [A/eV] E C-InAs J(E) E V-GaSb E C-InAs? n + pocket Weak inelastic coupling ( 1) J(E) E C-InAs A. Afzalian 27

28 InAs/GaSb TFET: Electron-Phonon scattering (A. Afzalian et al. SSDM 2017, invited) SS and performance not strongly degraded (< 10 %) for low power CMOS application (weak inelastic coupling ( 1)) Using efficient Mode Space Form Factor Method*: Use equivalent MS expression directly. Efficient in case of local scattering. in dq iq x ( x x ) n v', kl v, mm' ( x1, x2, E) e M q Nq 1 2 Gv' kl ( x1, x2, E q ) Fv, mm' ( x1, x2, q 3 t ) (2. ) 2 2 v', k, l q ballistic --o-- e-ph Acoustic, optical and polar optical (local) phonons Local Form factor*: simplifies as product of MS basis vectors F v', kl v, mm' v, m v, m' v', k v', l ( y, z; x ). ( y, z; x ). ( y, z; x ). ( y, z; x ) dydz ( x1 ) *A. Afzalian JAP 110, (2011)

29 Discrete Impurity (DI) Band tails: (DI = main source of band tails in doped crystalline semiconductor*) Band tails* DI s create non-uniform spatial potential profile Spatially varying onset of tunneling What is the impact on SS and I ON? *P. Van Mieghem, Rev. Mod. Phys. 64 (1992) 755 p+ ~ 5 DI Smooth DI center DI star5 GaSb S p+ ~ 5 DI InAs Pocket n+ ~ 5 DI E VGaSb E C-InAs n+ ~ 5 DI DI DI DI center star5 diagonal DI s simulated in an atomistic fashion on atomic sites** 29 **A. Afzalian et al., EDL (2012) 33 (9) 1228

30 Energy delay LP benchmark I OFF = 50 pa/ m Si V DD = 0.5 V Including e-ph + DI: TFET Performance advantage for LP is not fundamentally lost ( EDP 20%) TFET ideal e-ph+di V DD = 0.3 V Si V DD = 0.3 V Including extrinsic of an unloaded inverter cell with 3 NW/device 30

31 Conclusions Capability to simulate in an atomistic fashion million atoms III-V NWs using an innovative and efficient TB mode space (MS) NEGF technique. In-depth atomistic study of scaling potential of III-V GAA NW HTFET. n- and ptfet performance best above L =20 nm (d= 5.5 nm, [111] orientation). L =20 nm, V DD = 0.3 V can deliver same speed as DD = 0.5V but with ~3 power =12 nm (LP ITRS 2.0 HGAA beyond 5 nm node), [100] orientation best but 3 I ON and 2.4 EDP performance degradation vs. the 20 nm GAA design. Scattering and DI band tails do not fundamentally degrade steep slope and LP performance advantage of III-V NW HTFET. A. Afzalian 31

32 Acknowledgements Experimental III-V NW device: P. Ramvall, T. Vasen, M. Holland and M. Passlack (TSMC), C. Thelander, K.A. Dick, L.-E. Wernersson (Lund University). Support with NEMO5 coding: D. Lemus and T. Kubis (Purdue University). Thank you for your attention! (Invited) 32

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-18-28 OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices Mathieu Luisier

More information

Ultra-Scaled InAs HEMTs

Ultra-Scaled InAs HEMTs Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim 2,3, Jesús. A. del Alamo 2, and Mathieu Luisier 1 1 Network for Computational ti Nanotechnology and Birck

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 1 Analysis of Band-to-band Title of Talk Tunneling Structures Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 A Science & Technology Center Vertical Type-II TFET Structure

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

High-Performance Complementary III-V Tunnel FETs with Strain Engineering

High-Performance Complementary III-V Tunnel FETs with Strain Engineering High-Performance Complementary III-V Tunnel FETs with Strain Engineering Jun Z. Huang, Yu Wang, Pengyu Long, Yaohua Tan, Michael Povolotskyi, and Gerhard Klimeck arxiv:65.955v [cond-mat.mes-hall] 3 May

More information

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2017

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2017 arxiv:7.864v2 [cond-mat.mes-hall] 27 Dec 27 Robust Mode Space Approach for Atomistic Modeling of Realistically Large Nanowire Transistors Jun Z. Huang,, a) Hesameddin Ilatikhameneh, Michael Povolotskyi,

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Tunnel-FET: bridging the gap between prediction and experiment through calibration

Tunnel-FET: bridging the gap between prediction and experiment through calibration Tunnel-FET: bridging the gap between prediction and experiment through calibration Anne Verhulst Quentin Smets, Jasper Bizindavyi, Mazhar Mohammed, Devin Verreck, Salim El Kazzi, Alireza Alian, Yves Mols,

More information

III-V Nanowire TFETs

III-V Nanowire TFETs III-V Nanowire TFETs Lars-Erik Wernersson Lund Univeristy, Sweden Final Workshop 10 November 2017 Energy Efficient Tunnel FET Switches and Circuits imec 1 OUTLINE Status of III-V NW TFETs TFET Variability

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner

Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner Integrated Systems Laboratory ETH Zurich, Switzerland Outline Motivation Electron

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Effect of the High-k Dielectric/Semiconductor Interface on Electronic Properties in Ultra-thin Channels

Effect of the High-k Dielectric/Semiconductor Interface on Electronic Properties in Ultra-thin Channels Effect of the High-k Dielectric/Semiconductor Interface on Electronic Properties in Ultra-thin Channels Evan Wilson, Daniel Valencia, Mark J. W. Rodwell, Gerhard Klimeck and Michael Povolotskyi Electrical

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Alon Vardi, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

arxiv: v2 [cond-mat.mtrl-sci] 11 Sep 2016

arxiv: v2 [cond-mat.mtrl-sci] 11 Sep 2016 arxiv:1608.05057v2 [cond-mat.mtrl-sci] 11 ep 2016 Transport in vertically stacked hetero-structures from 2D materials Fan Chen, Hesameddin Ilatikhameneh, Yaohua Tan, Daniel Valencia, Gerhard Klimeck and

More information

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 MOSFET Transport Issues semiconductor band structure quantum confinement effects low-field mobility and high-field saturation Reading: - M. Lundstrom,

More information

InGaAs Double-Gate Fin-Sidewall MOSFET

InGaAs Double-Gate Fin-Sidewall MOSFET InGaAs Double-Gate Fin-Sidewall MOSFET Alon Vardi, Xin Zhao and Jesús del Alamo Microsystems Technology Laboratories, MIT June 25, 214 Sponsors: Sematech, Technion-MIT Fellowship, and NSF E3S Center (#939514)

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Analysis of InAs Vertical and Lateral Band-to-Band Tunneling. Transistors: Leveraging Vertical Tunneling for Improved Performance

Analysis of InAs Vertical and Lateral Band-to-Band Tunneling. Transistors: Leveraging Vertical Tunneling for Improved Performance Analysis of InAs Vertical and Lateral Band-to-Band Tunneling Transistors: Leveraging Vertical Tunneling for Improved Performance Kartik Ganapathi, Youngki Yoon and Sayeef Salahuddin a) Department of Electrical

More information

Engineering interband tunneling in nanowires with diamond cubic or zincblende crystalline structure based on atomistic modeling

Engineering interband tunneling in nanowires with diamond cubic or zincblende crystalline structure based on atomistic modeling arxiv:20.400v2 [cond-mat.mes-hall] 24 Sep 20 Engineering interband tunneling in nanowires with diamond cubic or zincblende crystalline structure based on atomistic modeling Pino D Amico, Paolo Marconcini,

More information

Challenges in the introduction of Band to Band tunneling in semiclassical models for Tunnel-FETs. DIEGM - University of Udine, IU.

Challenges in the introduction of Band to Band tunneling in semiclassical models for Tunnel-FETs. DIEGM - University of Udine, IU. Challenges in the introduction of Band to Band tunneling in semiclassical models for Tunnel-FETs, L.De Michielis*, M.Iellina and L.Selmi DIEGM - University of Udine, IU.NET *EPFL Outline Context Quantum

More information

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors

Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Imaginary Band Structure and Its Role in Calculating Transmission Probability in Semiconductors Jamie Teherani Collaborators: Paul Solomon (IBM), Mathieu Luisier(Purdue) Advisors: Judy Hoyt, DimitriAntoniadis

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Analysis of Ultra-Scaled InAs HEMTs Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche Birck Nanotechnology Center and Purdue University,

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

New Tools for the Direct Characterisation of FinFETS

New Tools for the Direct Characterisation of FinFETS Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2013 New Tools for the Direct Characterisation of FinFETS G. C. Tettamanzi PDelft University of Technology; University

More information

New Material Design and Device Simulation Tool. Dr. Gong Kui HZWTECH

New Material Design and Device Simulation Tool. Dr. Gong Kui HZWTECH New Material Design and Device Simulation Tool Dr. Gong Kui HZWTECH 鸿之微科技 ( 上海 ) 股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD outline Atomistic-TCAD:new devices simulation tool Applications of Atomistic-TCAD

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

Defect and Temperature Dependence of Tunneling in InAs/GaSb Heterojunctions

Defect and Temperature Dependence of Tunneling in InAs/GaSb Heterojunctions Defect and Temperature Dependence of Tunneling in InAs/GaSb Heterojunctions Ryan M. Iutzi, Eugene A. Fitzgerald Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge,

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability Journal of Computational Electronics 3: 165 169, 2004 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Computational Model of NBTI and Hot Carrier Injection Time-Exponents

More information

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors Jing Guo, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering, Purdue University, West Lafayette,

More information

ALD high-k and higher-k integration on GaAs

ALD high-k and higher-k integration on GaAs ALD high-k and higher-k integration on GaAs Ozhan Koybasi 1), Min Xu 1), Yiqun Liu 2), Jun-Jieh Wang 2), Roy G. Gordon 2), and Peide D. Ye 1)* 1) School of Electrical and Computer Engineering, Purdue University,

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Ultimately Scaled CMOS: DG FinFETs?

Ultimately Scaled CMOS: DG FinFETs? Ultimately Scaled CMOS: DG FinFETs? Jerry G. Fossum SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130 J. G. Fossum / 1 Outline Introduction -

More information

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs 42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4,

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications 30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications T.-W. Kim, D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures 1 Milad Abtin, 2 Ali Naderi 1 Department of electrical engineering, Masjed

More information

Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies

Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies 1 Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies Steven P. Surgnier Abstract A timing simulation is presented for a MOSFET implemented

More information

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1 Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W fin =20nm) with High Mobility (μ Hole =700 cm 2 /Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate A. Agrawal 1, M. Barth 1, G. B. Rayner

More information

Understanding the effect of n-type and p-type doping in the channel of graphene nanoribbon transistor

Understanding the effect of n-type and p-type doping in the channel of graphene nanoribbon transistor Bull. Mater. Sci., Vol. 39, No. 5, September 2016, pp. 1303 1309. DOI 10.1007/s12034-016-1277-9 c Indian Academy of Sciences. Understanding the effect of n-type and p-type doping in the channel of graphene

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

SCHOTTKY BARRIER MOSFET DEVICE PHYSICS FOR CRYOGENIC APPLICATIONS

SCHOTTKY BARRIER MOSFET DEVICE PHYSICS FOR CRYOGENIC APPLICATIONS CHOTTKY BARRIER FET DEVICE PHYIC FOR CRYOGENIC APPLICATION Mike chwarz, Laurie E. Calvet, John P. nyder, Tillmann Krauss, Udo chwalke, Alexander Kloes cope OI and Multi-Gate FETs Dresden ept.3, 2018 New

More information

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa Stretching the Barriers An analysis of MOSFET Scaling Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa Why Small? Higher Current Lower Gate Capacitance Higher

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Dissipative Transport in Rough Edge Graphene Nanoribbon. Tunnel Transistors

Dissipative Transport in Rough Edge Graphene Nanoribbon. Tunnel Transistors Dissipative Transport in Rough Edge Graphene Nanoribbon Tunnel Transistors Youngki Yoon and Sayeef Salahuddin Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,

More information

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Quantum-size effects in sub-10 nm fin width InGaAs finfets Quantum-size effects in sub-10 nm fin width InGaAs finfets Alon Vardi, Xin Zhao, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 9, 2015 Sponsors: DTRA NSF (E3S STC) Northrop

More information

The Prospects for III-Vs

The Prospects for III-Vs 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Enhancement-mode quantum transistors for single electron spin

Enhancement-mode quantum transistors for single electron spin Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-1-2006 Enhancement-mode quantum transistors for single electron spin G. M. Jones B. H. Hu C. H. Yang M. J.

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets

Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets Andreas Schenk a,, a Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, CH-8092, Switzerland

More information

The Pennsylvania State University The Graduate School DEVICE AND ARCHITECTURE CO-DESIGN FOR ULTRA-LOW POWER LOGIC USING EMERGING TUNNELING-BASED

The Pennsylvania State University The Graduate School DEVICE AND ARCHITECTURE CO-DESIGN FOR ULTRA-LOW POWER LOGIC USING EMERGING TUNNELING-BASED The Pennsylvania State University The Graduate School DEVICE AND ARCHITECTURE CO-DESIGN FOR ULTRA-LOW POWER LOGIC USING EMERGING TUNNELING-BASED DEVICES A Dissertation in Computer Science and Engineering

More information

AS MOSFETS reach nanometer dimensions, power consumption

AS MOSFETS reach nanometer dimensions, power consumption 1 Analytical Model for a Tunnel Field-Effect Transistor Abstract The tunnel field-effect transistor (TFET) is a promising candidate for the succession of the MOSFET at nanometer dimensions. Due to the

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors

Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors David Jiménez Departament d'enginyeria Electrònica, Escola d'enginyeria, Universitat Autònoma de Barcelona,

More information

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance 1 Seminar Spacer Lithography for Reduced Variability in MOSFET Performance Prof. Tsu-Jae King Liu Electrical Engineering & Computer Sciences Dept. University of California at Berkeley Graduate Student:

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor

Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor JOURNAL OF APPLIED PHYSICS 99, 054503 2006 Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor M. J. Gilbert a and D. K. Ferry Department of Electrical Engineering and

More information

Semiconductor Nanowires: Motivation

Semiconductor Nanowires: Motivation Semiconductor Nanowires: Motivation Patterning into sub 50 nm range is difficult with optical lithography. Self-organized growth of nanowires enables 2D confinement of carriers with large splitting of

More information

Gate Carrier Injection and NC-Non- Volatile Memories

Gate Carrier Injection and NC-Non- Volatile Memories Gate Carrier Injection and NC-Non- Volatile Memories Jean-Pierre Leburton Department of Electrical and Computer Engineering and Beckman Institute University of Illinois at Urbana-Champaign Urbana, IL 61801,

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

Universal TFET model implementation in Verilog-A

Universal TFET model implementation in Verilog-A Universal TFET model implementation in Verilog-A Version 1.6.8, January 2015 Hao Lu*, Trond Ytterdal #, and Alan Seabaugh* *University of Notre Dame # Norwegian University of Science and Technology Table

More information

ADVANCED BOUNDARY CONDITION METHOD IN QUANTUM TRANSPORT AND ITS APPLICATION IN NANODEVICES. A Dissertation. Submitted to the Faculty

ADVANCED BOUNDARY CONDITION METHOD IN QUANTUM TRANSPORT AND ITS APPLICATION IN NANODEVICES. A Dissertation. Submitted to the Faculty ADVANCED BOUNDARY CONDITION METHOD IN QUANTUM TRANSPORT AND ITS APPLICATION IN NANODEVICES A Dissertation Submitted to the Faculty of Purdue University by Yu He In Partial Fulfillment of the Requirements

More information

www.iue.tuwien.ac.at/wigner-wiki/ quantum r rmnh h h E a n = a E b n = b h h h n = 1 n = 1 n = 1 0.53 h h n h cos sin 1 1 N ψ = 1 N! ϕ n1 (x 1 ) ϕ n2 (x 1 ) ϕ nn (x 1 ) ϕ n1 (x 2 ) ϕ n2 (x 2

More information

Performance Comparison of Graphene Nanoribbon FETs. with Schottky Contacts and Doped Reservoirs

Performance Comparison of Graphene Nanoribbon FETs. with Schottky Contacts and Doped Reservoirs Performance Comparison of Graphene Nanoribbon FETs with Schottky Contacts and Doped Reservoirs Youngki Yoon 1,a, Gianluca Fiori 2,b, Seokmin Hong 1, Giuseppe Iannaccone 2, and Jing Guo 1 1 Department of

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea. SPCC 2018 Hanyang University NEMPL Jin-Goo Park 1,2 *, Jung-Hwan Lee a, In-chan Choi 1, Hyun-Tae Kim 1, Lieve Teugels 3, and Tae-Gon Kim 3 1 Department of Bio-Nano Technology and 2 Materials Science and

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Technology Development for InGaAs/InP-channel MOSFETs

Technology Development for InGaAs/InP-channel MOSFETs MRS Spring Symposium, Tutorial: Advanced CMOS Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University

More information

S=0.7 [0.5x per 2 nodes] ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Scaling ITRS Roadmap

S=0.7 [0.5x per 2 nodes] ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Scaling ITRS Roadmap ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 15: October 4, 2013 Scaling Today VLSI Scaling Trends/Disciplines Effects Alternatives (cheating) 1 2 Scaling ITRS Roadmap

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information