Transistor's self-und mutual heating and its impact on circuit performance

Size: px
Start display at page:

Download "Transistor's self-und mutual heating and its impact on circuit performance"

Transcription

1 Transistor's self-und mutual heating and its impact on circuit performance M. Weiß, S. Fregonese, C. Maneux, T. Zimmer 26 th BipAk, 15 November 2013, Frankfurt Oder, Germany

2 Outline 1. Motivation. Research overview 2. Device-level electrothermal investigations 3. Circuit-level electrothermal investigations 4. Conclusion. Future work. 2

3 Research Overview Multi-transistor array Higher device temperature! Thermal coupling effects! 3D temperature distribution in a 3 finger multi-transistor array (Figure taken from Electrothermal HBT modeling, G. Wedel et al., HiCuM Workshop 2012) ΔT x 3

4 Outline 1. Motivation. Research overview 2. Device-level electrothermal investigations 3. Circuit-level electrothermal investigations 4. Conclusion. Future work. 4

5 Thermal Coupling Network P power dissipations (Current) R th thermal resistances ΔT temperature increase (Voltage) Single-pole thermal network 5

6 Thermal Coupling Network P 1, P 2 power dissipations R th_11, R th_22 selfheating thermal resistances c 12, c 21 mutual thermal coupling factors ΔT 1, ΔT 2 temperature increase in the transistors [2] D. J. Walkey et al., Equivalent circuit modeling of static substrate thermal coupling using VCVS representation, IEEE J. Solid-State Circuits,

7 Test Structure Inter Device Coupling Test structure Intra Device Coupling Micrograph E 2 E 4 E 1 C E 3 E 5 7

8 Temperature Measurement T4 is heating Wafer T=300K Distance D between deep trench T 1 T 2 T 3 T 4 T T in 300K, T4 heating T in 300K, T4 heating T in 300K, T4 heating P diss [mw] Intra device coupling in multi-finger transistor T in 300K, T4 heating T in 300K, T4 heating T in 300K, T4 heating D=1.5µm D=5µm D=3µm P diss [mw] Inter device coupling in multi-transistor array 8

9 Coup. Factor [%] Coup. Factor [%] Coupling Factors Wafer T=300K T 1 T 2 T 3 T 4 T C 12 C 21 C 34 C 32 C 23 C 13 C 24 C 31 C 35 C 14 C 25 C P diss [mw] P diss [mw] Intra device coupling in multi-finger transistor 4 2 D=1.5µm Inter device coupling in multitransistor array with distance D=1.5µm C 12 C 21 C 34 C 32 C 23 C 13 C 24 C 31 C 35 C 14 C 25 C 15 9

10 T Lattice [K] Coup. Factor [%] 3D Thermal Simulation solid lines = CF from TCAD symbols = CF from meas. C 12 C 21 C C 23 C 13 C C 31 C 14 C 25 C 15 x C XY P diss [mw] Intra device coupling in multi-finger transistor dtx / dp R Y dt / dp R th _ XY Y Y th _ YY X Sensing Y Heating E1 E2 E3 x E4 E5 Applied power per finger 30mW [7] M. Weiß et al., Characterization of intra device mutual thermal coupling in multi finger SiGe: C HBTs, EDSSC Conference,

11 I C [ma] I C [ma] Model Verification Output characteristics for 5 devices operating parallel Wafer T=300K T 1 T 2 T 3 T 4 T V BE =0.80V V BE =0.85V V BE =0.90V V BE =0.95V V BE =0.80V V BE =0.85V V BE =0.90V V BE =0.95V V CE [V] Intra device coupling in multi-finger transistor V CE [V] Inter device coupling in multi-transistor array, D=1.5µm [8] M. Weiß et al., Mutual thermal coupling in SiGe: C HBTs, SBMicro Conference,

12 Outline 1. Motivation. Research overview 2. Device-level electrothermal investigations 3. Circuit-level electrothermal investigations 4. Conclusion. Future work. 12

13 Specifications 53 CML Inverter Voltage Swing: 200mV Out p In p R L V CC Ring Oscillator: Optimization Simplified CML Inverter R L T 3 T 4 Out n In n Variables Transistor Configuration Emitter Length L E Current Source I 0 Resistance R L gate,min [ps] CBE CBEB CBEBC CBEBC2 CBEBC3 CBEBC4 Propagation Delay 1 t p 2 53 f osc I l E [ m] 13

14 Ring Oscillator: Results Temperature Diode VEE OUT VEE Output Buffer Vk VBUF Va 53 Inverter VPOL VEE VCC VCC VEE Current Mirror Fabricated RO including 53 CML inverter stages and a temperature sensor Wafer map of the gate delay, HBT 0.18x5µm 2, I gate =12.5mA [9] M. Weiß et al., Optimized Ring Oscillator With 1.65-ps, Electron Device Letters,

15 T circ [ C] Ring Oscillator: Circuit temperature L Transistor (T j ) W Wafer T amb =300K Circuit (T circ ) ΔT 2 ΔT Circ Temp Model Circ Temp Meas gate [ps] Meas Sim T27 Sim TModel Sim TMeas I gate [ma] Measured and simulated circuit temperature vs. I gate I gate [ma] τ gate vs. I gate : Measurements (symbols) and HICUM simulation (solid lines) [10] M. Weiß et al., Characterization of mutual heating inside a SiGe RO, BCTM Conference,

16 T 3 [K] gate [ps] T 5 [K] Ring Oscillator: Coupled Simulation VCC V CC 8 R C R C OUTp INn Q3 Q1 Q4 Q2 OUTn INp 7 Vbias up R F I gate 0 Q5 Q6 R F Vbias down 6 C F R E R E C F 60 standard sim. sim. with th. coupling t [ns] 1.6 Meas Sim T27 Sim TMeas standard sim. sim. with th. coupling t [ns] I gate [ma] 16

17 Power amplifier Load Pull test bench Five-finger transistor (INTRA) Five-transistor array (INTER) A five-finger transistor and five transistor array are operated as a PA Each emitter has a drawn emitter area A E =5x0.18µm 2 Matching with load-pull tuners 17

18 P out [dbm], Gain [db], PAE [%] Power amplifier: Single transistor Compact model verification: Comparison simulation vs. power measurements for 1 transistor j0.7 j j0.3 j0.5-3db -2dB -1dB j2.0 j j0.1 j10 j Sim 1xCBEBC Pout Gain PAE P in [dbm] -j0.1 -j0.3 -j0.5 -j0.7 -j0.9 -j2.0 -j4.0 -j50 -j10 Tran Meas: G max Z load = i Tran Sim: G max Z load = i P out, Gain, PAE vs. P in in matched condition Load pull contours for constant power gain 18

19 P out [dbm], Gain [db] P out [dbm], Gain [db] Power amplifier: Transistor array Characteristics of both devices are close at low power dissipation At higher bias (V BE =0.9V, V CE =1.5V) significant performance degradation of the multi-finger transistor due to thermal coupling Good agreement with circuit simulations in both cases PA INTER meas PA INTRA meas PA INTER sim PA INTRA sim P in [dbm] PA INTER meas PA INTRA meas PA INTER sim PA INTRA sim P in [dbm] V BE =0.9V, V CE =1V V BE =0.9V, V CE =1.5V 19

20 Outline 1. Motivation. Research overview 2. Device-level electrothermal investigations 3. Circuit-level electrothermal investigations 4. Conclusion. Future work. 20

21 Conclusion (1/2) Novel test structures to characterize thermal coupling of state of the art trench isolated SiGe HBT technology Thermal coupling factors were extracted from multi-finger transistor (INTRA) and multi-transistor array (INTER) Standard thermal network has been replaced by distributed networks in order to model accurately thermal impedance and thermal coupling between neighboring devices The models were implemented as netlist in Agilent ADS (easy to use for circuit designers) 21

22 Conclusion (2/2) Electrical performance of the multi-finger transistor is degraded due to the significant thermal coupling effect between the emitter stripes Coupled simulation accurately predict thermal effects in multi-finger SiGe HBTs, often used for high speed applications due to lower input resistance and capacitance Model has been already successfully applied for two circuits (PA and of a RO with 218 transistors) Device performance is often limited by thermal effects rather than the electronic limitations circuit designers need accurate models to exploit full potential of a technology 22

23 Future work Thermal stability can be improved, access to the thermal nodes of each finger allows to estimate ballasting resistors The thermal stability in multiple-finger transistors can be increased by adjustment of emitter to emitter distances to make the spatial temperature distribution across the device approximately uniform Thermal coupling capacitances should be considered in a next step Parameter extraction based on isothermal pulsed DC/RF measurements 23

24 Acknowledgement This work is part of the: DOTSEVEN project supported by the European Commission through the Seventh Framework Programme for Research and Technological Development. Acknowledgements to Catrene RF2THz project We want to thank ST microelectronics for helpful discussions and PDK support

BEOL-investigation on selfheating and SOA of SiGe HBT

BEOL-investigation on selfheating and SOA of SiGe HBT BEOL-investigation on selfheating and SOA of SiGe HBT Rosario D Esposito, Sebastien Fregonese, Thomas Zimmer To cite this version: Rosario D Esposito, Sebastien Fregonese, Thomas Zimmer. BEOL-investigation

More information

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements P. Sakalas $,#, A. Pawlak $, M. Schroter $ $ CEDIC, Technische Universität Dresden, Mommsenstrasse 13, Germany # FRLab. Semiconductor

More information

Modeling of Devices for Power Amplifier Applications

Modeling of Devices for Power Amplifier Applications Modeling of Devices for Power Amplifier Applications David E. Root Masaya Iwamoto John Wood Contributions from Jonathan Scott Alex Cognata Agilent Worldwide Process and Technology Centers Santa Rosa, CA

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance

Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance Gerhard G. Fischer IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

Investigation of Ge content in the BC transition region with respect to transit frequency

Investigation of Ge content in the BC transition region with respect to transit frequency Investigation of Ge content in the BC transition region with respect to transit frequency P.M. Mans (1),(2), S. Jouan (1), A. Pakfar (1), S. Fregonese (2), F. Brossard (1), A. Perrotin (1), C. Maneux (2),

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Semiconductor Device Simulation

Semiconductor Device Simulation motivation and target applications compact model development under conditions relevant for circuit design development of test structures and measurement methods (fast) predicting device performance and

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC06 74HC/HCT/HCU/HCMOS ogic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions T. Rosenbaum 1,2,3, D. Céli 1, M. Schröter 2, C. Maneux 3 Bipolar ArbeitsKreis München, Germany, November

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Accurate transit time determination and. transfer current parameter extraction

Accurate transit time determination and. transfer current parameter extraction Accurate transit time determination and transfer current parameter extraction T. Rosenbaum, A. Pawlak, J. Krause, M. Schröter Chair for Electron Devices and Integrated Circuits (CEDIC) University of Technology

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting. Product data sheet

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting. Product data sheet 3-to-8 line decoder, demultiplexer with address latches; inverting Product data sheet 1. General description 2. Features The is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky

More information

Advantages of Using CMOS

Advantages of Using CMOS Advantages of Using CMOS Compact (shared diffusion regions) Very low static power dissipation High noise margin (nearly ideal inverter voltage transfer characteristic) Very well modeled and characterized

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Investigation of New Bipolar Geometry Scaling Laws

Investigation of New Bipolar Geometry Scaling Laws Investigation of New Bipolar Geometry Scaling Laws D. CELI 20 th Bipolar Arbeitskreis Munich, October 2007 Purpose Robust and high-performance RF circuit design need optimization of transistors. Therefore

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET F a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Infmation The IC6 74HC/HCT/HCU/HCMOS

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET F a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Infmation The IC6 74HC/HCT/HCU/HCMOS

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Regional Approach Methods for SiGe HBT compact modeling

Regional Approach Methods for SiGe HBT compact modeling Regional Approach Methods for SiGe HBT compact modeling M. Schroter 1),2) and H. Tran 2) 1) ECE Dept., University of California San Diego, La Jolla, CA, USA 2) Chair for Electron Devices and Integr. Circuits,

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET F a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Infmation The IC06 74HC/HCT/HCU/HCMOS

More information

MM74C906 Hex Open Drain N-Channel Buffers

MM74C906 Hex Open Drain N-Channel Buffers Hex Open Drain N-Channel Buffers General Description The MM74C906 buffer employs monolithic CMOS technology in achieving open drain outputs. The MM74C906 consists of six inverters driving six N-channel

More information

HICUM release status and development update L2 and L0

HICUM release status and development update L2 and L0 HICUM release status and development update L2 and L0 M. Schröter, A. Pawlak 17th HICUM Workshop Munich, Germany May 29th, 2017 Contents HICUM/L2 in a nutshell Release of HICUM/L2 version 2.4.0 Strong

More information

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller

More information

Lecture 25. Semiconductor Memories. Issues in Memory

Lecture 25. Semiconductor Memories. Issues in Memory Lecture 25 Semiconductor Memories Issues in Memory Memory Classification Memory Architectures TheMemoryCore Periphery 1 Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 1 Hw 8 Posted Last one to be graded Due Friday April 30 Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 2 1 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 Frequency

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET F a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Infmation The IC6 74C/CT/CU/CMOS ogic

More information

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration T. Rosenbaum 1,2,3, D. Céli 1, M. Schröter 2, C. Maneux 3 Bipolar ArbeitsKreis Unterpremstätten, Austria, November 6, 2015 1 STMicroelectronics,

More information

Runtime Analysis of 4 VA HiCuM Versions with and without Internal Solver

Runtime Analysis of 4 VA HiCuM Versions with and without Internal Solver Runtime Analysis of 4 VA HiCuM Versions with and without Internal Solver Didier Céli, Jean Remy 28 th ArbeitsKreis Bipolar - Letter Session Unterpremstaetten, Austria, November 5/6, 215 dm23a.15 Outline

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

STUDY OF THERMAL RESISTANCE MEASUREMENT TECHNIQUES

STUDY OF THERMAL RESISTANCE MEASUREMENT TECHNIQUES STUDY OF THERMAL RESISTANCE MEASUREMENT TECHNIQUES The Development of the Next Generation VLSI Technology for Very High Speed Analog Chip Design PROJECT UPDATE Prepared for : Dr. Ronald Carter Dr. W.Alan

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Frequency Detection of CDRs (1)

Frequency Detection of CDRs (1) Frequency Detection of CDs (1) ecall that faster PLL locking can be accomplished by use of a phase-frequency detector (PFD): V in V up V up V dn -4 π -2 π +2 π +4 π φ in φ out 2V swing V f V dn K pd =

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Non-standard geometry scaling effects

Non-standard geometry scaling effects Non-standard geometry scaling effects S. Lehmann 1), M. Schröter 1),2), J. Krause 1), A. Pawlak 1) 1) Chair for Electron Devices and Integr. Circuits, Univ. of Technol. Dresden, Germany 2) ECE Dept., University

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications Hitoshi Aoki and Haruo Kobayashi Faculty of Science and Technology, Gunma University (RMO2D-3) Outline Research Background Purposes

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC06 74HC/HCT/HCU/HCMOS ogic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

74HC4053; 74HCT4053. Triple 2-channel analog multiplexer/demultiplexer

74HC4053; 74HCT4053. Triple 2-channel analog multiplexer/demultiplexer Product data sheet 1. General description 2. Features The is a high-speed Si-gate CMOS device and is pin compatible with the HEF4053B. It is specified in compliance with JEDEC standard no. 7A. The is triple

More information

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities: Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

More information

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1 CMDU-3KA Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697-1 (7) 95-77 Dual IGBTMOD KA-Series Module Amperes/17 Volts B F A G T C MEASURED POINT M C L T - ( TYP.) N R Z CE1 E C1 C E AA S - (3

More information

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics Lecture 23 Dealing with Interconnect Impact of Interconnect Parasitics Reduce Reliability Affect Performance Classes of Parasitics Capacitive Resistive Inductive 1 INTERCONNECT Dealing with Capacitance

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

74HC4067; 74HCT channel analog multiplexer/demultiplexer

74HC4067; 74HCT channel analog multiplexer/demultiplexer Product data sheet 1. General description 2. Features 3. Applications The is a high-speed Si-gate CMOS device and is pin compatible with the HEF4067B. The device is specified in compliance with JEDEC standard

More information

74HC4051; 74HCT channel analog multiplexer/demultiplexer

74HC4051; 74HCT channel analog multiplexer/demultiplexer Product data sheet 1. General description 2. Features 3. Applications The is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). The device is specified in compliance

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET F a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Infmation The IC06 74C/CT/CU/CMOS ogic

More information

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application KH 1GHz, Differential Input/Output Amplifier www.cadeka.com Features DC - 1GHz bandwidth Fixed 1dB (V/V) gain 1Ω (differential) inputs and outputs -7/-dBc nd/3rd HD at MHz ma output current 9V pp into

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Design of Narrow Band Filters Part 2

Design of Narrow Band Filters Part 2 E.U.I.T. Telecomunicación 200, Madrid, Spain, 27.09 30.09.200 Design of Narrow Band Filters Part 2 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor PDP TRENCH IGBT PD - 9634 IRG6B33UDPbF Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications l Low V CE(on) and Energy per Pulse (E PULSE TM

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

Features. Y Wide supply voltage range 3 0V to 15V. Y Guaranteed noise margin 1 0V. Y High noise immunity 0 45 VCC (typ )

Features. Y Wide supply voltage range 3 0V to 15V. Y Guaranteed noise margin 1 0V. Y High noise immunity 0 45 VCC (typ ) MM70C95 MM80C95 MM70C97 MM80C97 TRI-STATE Hex Buffers MM70C96 MM80C96 MM70C98 MM80C98 TRI-STATE Hex Inverters General Description These gates are monolithic complementary MOS (CMOS) integrated circuits

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook INTEGRATED CIRCUITS Triple 3-Input AND gate 1991 Feb 08 IC05 Data Handbook TYPE TYPICAL PROPAGATION DELAY TYPICAL SUPPLY CURRENT (TOTAL) 5.5ns 1.3mA PIN CONFIGURATION 1A 1 1B 2 14 13 V CC 1C ORDERING INFORMATION

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specificatio The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BFG541 NPN 9 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

DISCRETE SEMICONDUCTORS DATA SHEET. BFG541 NPN 9 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14 DISCRETE SEMICONDUCTORS DATA SHEET BFG4 File under Discrete Semiconductors, SC4 September 99 BFG4 FEATURES High power gain Low noise figure High transition frequency Gold metallization ensures excellent

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting 3-to-8 line decoder, demultiplexer with address latches; inverting Rev. 03 11 November 2004 Product data sheet 1. General description 2. Features The is a high-speed Si-gate CMOS device and is pin compatible

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state Rev. 7 4 March 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an 8-bit positive-edge triggered D-type flip-flop with 3-state outputs. The device

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information