ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15


 Maximilian Flowers
 3 years ago
 Views:
Transcription
1 ESE 570 MOS TRANSISTOR THEORY Part 1
2 TwoTerminal MOS Structure 2 GATE Si Oxide interface n n Mass Action Law VB 2
3 Chemical Periodic Table Donors American Chemical Society (ACS) Acceptors Metalloids 3
4 Ideal Equilibrium MOS Capacitor Energy Bands q / Si =q 3 Si (,E C E V Oxide qφm metal VG = 0 Work Functions qφm, qφsi = energy required to move an electron from E F to Evacuum for metal gate, Si respectively. Si surface EC, EFm EFp Gate p doped Si E C E V E i= 2 NOTE: 1. qφ and E are in units of energy = electronvolts (ev); where 1 ev = 1.6 x J ev corresponds to energy acquired by a free electron that is accelerated by an electric potential of one volt. 3. Φ and V corresponds to potential difference in volts. 4
5 MOS Capacitor with External Bias Three Regions of Operation: 1. Accumulation Region VG < 0 2. Depletion Region VG > 0, small 3. Inversion Region VG VT, large 5
6 Energy Bands Accumulation Region Si surface Accumulation VG < 0 EFm qv G =E Fp E Fm Band bending due to VG < 0 qφ(x) qφs qφfp 0 EFp x q / Fp = E Fp E i bulk )0 q /, x = E Fp E i, x Surface potential: q / S =q /,0)0 Band bending:. E i,x = E i,x E i bulk *0 6
7 MOS Capacitor Depletion Region tox mobile holes 7
8 Energy Bands Depletion Region Si surface Depletion VG > 0 (small) Band bending due to VG > 0 qφ(x) qφfp qv G =E Fp E Fm qφs EFm xd EFp q / Fp = E Fp E i bulk )0 q /, x = E Fp E i, x x 0 Surface Potential: q / S =q /,0*0 Band bending:. E i,x = E i, x E i bulk )0 8
9 MOS Capacitor Depletion Region tox surface potential (Fermi 2 S potential at surface) 2 2 Fp Bulk or Fermi potential 2 =2 = kt ln ni )0 Fp F q NA 26 mv at room T Mobile hole charge density (per unit area) in thin layer parallel to SiOxide interface Depletion region potential needed to displace dq by distance x into bulk (Poisson Eq.) NOTE 2 Fp 2Fp 2S 2S 2 FS 2 1Si 2 2FpS 2 xd= qna Q= q N A x d = 2 q N A 1 Si 2 2S 2 F S Fp 2 9
10 Energy Bands Inversion Region Si surface Inversion VG VT0 > 0 / S = / V G =V T0 qv G =E Fp E Fm qφfp qφs EFm EFp q / Fp = E Fp E i bulk )0 xdm q /, x = E Fp E i, x x 0 Surface Potential: q/ S =q /,0= q / Fp *0 Band bending:. E i,x = E i, x E i bulk )0 10
11 MOS Capacitor Inversion Region VG VT (threshold voltage) tox VG = VT for φs = φfp F.= q N A 1 Si Fp S = 2 Fp 22S = 2 F 2 1 Si 2 2Fp 2 1 Si 2 2 F2 S 2F x dm= x dm=x d l 2 = 22S= q N A = 2F qn A ni kt 2 Fp =2 F = ln q NA S F,2 S = 2 F kt N D 2Fn =2 F = ln q ni 11
12 MOS Capacitor Inversion Region VG VT (threshold voltage) INVERSION CONDITION Key Equations 2S = 2F when n = NA ni kt 2 F =2 Fp= ln V q NA kt N D V 2F =2 Fn = ln q ni Depletion region charge density psub nsub Q B0 = qn A 1 Si 2 2 F Where c/cm2 1 Si 31 ox F/cm VG = VFB for φs = φf flat band (FB) condition, i.e. no band bending. 12
13 nmos layout 13
14 G 14
15 TwoTerminal MOS Structure > nmos Transistor VG VS VD depletion region 15
16 nmos Transistor = MOS Capacitor source/drain VSB = 0 VS VD VG NOTE: In Cadence SPICE = Spectre 1 Si 31 ox m where 21Si 2 2Fp V SB where x dm= qn A NOTE: Since NA >> ni : φfp < 0 16
17 VT0n,p [VT0 > VT0 in SPICE] Q ox Q B0 for nmos and pmos V T0=/GC 22 F VFB = flat band voltage Q ox V FB =/GC / GC Q B0 = q N A 1 Si 2 2 F ) with VSB = 0. VFB VFB l work function between gate and channel for psub 2 F =2 Fp 17
18 Adjusting VT0 Using and an Added Channel Implant Q B0 V T0 =V FB 2 2F Intrinsic VT0 no channel implant adjustment Q B0 q N I V =V T0 (. V T0 =V FB 22 F ± ' T0 qni.v T0 =± Adjusted V'T0 due to channel implant adjustment with carrier concentration NI qni for ptype implant ( q N I for ntype implant NOTE: When channel implant adjustment N I is done as a step in the CMOS process, the SPICE parameter VT0 refers to the adjusted threshold voltage V'T0. 18
19 Q B0 V T0 =V FB 2 2F Q B= q N A 1 Si 2 2 F V SB for VSB = 0 Q B0 = q N A 1 Si 2 2F Q B Q B0 Q B0 ( V T =V FB 22 F Q B0 Q B Q B0 V T =V FB 22 F VT0 Q B Q B0 2q N A 1 Si =, 2 2F V SB 2 2 F V T =V T0 (0, 2 2 F V SB 2 2 F units = V1/2 19
20 VSB is 0 in nmos, 0 in pmos VOX is negative positive in )pmos, negative in pmos (VT0p) Q is fornmos nmos(v and T0n T0 0 20
21 VSB 21
22 1 for 1 A=10 10 m 1 φf Q B0 V T0n=V FB 22Fp ni kt 1.45 x Fp = ln =0.26V ln, = 0.35V 16 q NA 10 22
23 Q B0 V T0n=V FB 22Fp 1 2 Fp = 0.35 V Q B0 = 2 q N A 1 Si 22 Fp.= 2,1.6 x C,10 cm,1.06 x 10 1 F cm 0.70 V F = C/V V T0n= 1.04 V 2, 0.35V, 0.72 V =0.38 V 23
24 2 Example 1 2Fp = 0.35V bulk potential V Tn=V T0n(0, 2 2 Fp V SB 2 2 F Units Calc x 10 8 C /,V 1/ 2 cm 2 1/ 2.= =0.85 V 1/2 V 6.8 x 10 8 C /,V cm 2 C 2 cm 4 V 1 =V 1/ 2 2 C cm V 1 24
25 2 V Tn=V T0n(0, 22Fp V SB 22 F where V T0n =0.38 V 1/ 2 0=0.85V 2Fp = 0.35V 1 V Tn=0.38 V (0, 0.70 V V SB 0.70 V 25
Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET NType, PType. Semiconductor Physics.
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "
More informationEE 560 MOS TRANSISTOR THEORY
1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE ptype doped Si (N A = 10 15 to 10 16 cm 3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects
More information! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cutoff. " Depletion.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationFundamentals of the Metal Oxide Semiconductor FieldEffect Transistor
Triode Working FET Fundamentals of the Metal Oxide Semiconductor FieldEffect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationMOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.
INEL 6055  Solid State Electronics ECE Dept. UPRM 20th March 2006 Definitions MOS Capacitor Isolated Metal, SiO 2, Si Threshold Voltage qφ m metal d vacuum level SiO qχ 2 E g /2 qφ F E C E i E F E v qφ
More informationElectrical Characteristics of MOS Devices
Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Thresholdvoltage
More informationSemiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5
Semiconductor Devices C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5 Global leader in environmental and industrial measurement Wednesday 3.2. afternoon Tour around facilities & lecture
More informationLecture 11: MOS Transistor
Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Crosssection and layout
More informationLecture 04 Review of MOSFET
ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D
More informationLecture 12: MOS Capacitors, transistors. Context
Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationChoice of V t and Gate Doping Type
Choice of V t and Gate Doping Type To make circuit design easier, it is routine to set V t at a small positive value, e.g., 0.4 V, so that, at V g = 0, the transistor does not have an inversion layer and
More informationThe Intrinsic Silicon
The Intrinsic ilicon Thermally generated electrons and holes Carrier concentration p i =n i ni=1.45x10 10 cm3 @ room temp Generally: n i = 3.1X10 16 T 3/2 e 1.21/2KT cm 3 T= temperature in K o (egrees
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!
More informationThe Devices: MOS Transistors
The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, AddisonWesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor
More informationLecture 22 FieldEffect Devices: The MOS Capacitor
Lecture 22 FieldEffect Devices: The MOS Capacitor F. Cerrina Electrical and Computer Engineering University of Wisconsin Madison Click here for link to F.C. homepage Spring 1999 0 Madison, 1999II Topics
More informationEE105  Fall 2006 Microelectronic Devices and Circuits
EE105  Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM
More informationCHAPTER 5 MOS FIELDEFFECT TRANSISTORS
CHAPTER 5 MOS FIELDEFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancementtype NMOS transistor 5.3 IV characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University
NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias
ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level
More informationVirtual Device Simulation. Virtual Process Integration
: CMOS Process and Device Simulation Virtual Device Simulation Virtual Process Integration Dr Zhou Xing Office: S1B1c95 Phone: 67904532 Email: exzhou@ntu.edu.sg Web: http://www.ntu.edu.sg/home/exzhou/teaching//
More informationECE 340 Lecture 39 : MOS Capacitor II
ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS CapacitanceVoltage Analysis Things you should know when you leave Key Questions What are the effects
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationClass 05: Device Physics II
Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor  Band Diagrams at V=0 6. NFET as a Capacitor  Accumulation
More informationPart 4: Heterojunctions  MOS Devices. MOSFET Current Voltage Characteristics
MOS Device Uses: Part 4: Heterojunctions  MOS Devices MOSCAP capacitor: storing charge, chargecoupled device (CCD), etc. MOSFET transistor: switch, current amplifier, dynamic random access memory (DRAMvolatile),
More informationContent. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching
Content MIS Capacitor Accumulation Depletion Inversion MOS CAPACITOR 1 MIS Capacitor Metal Oxide C ox psi C s Components of a capacitance model for the MIS structure 2 MIS Capacitor Accumulation ρ( x)
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationLecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)
Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime
More informationan introduction to Semiconductor Devices
an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the MetalOxideSemiconductor FieldEffect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor 
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationMOSFET: Introduction
E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major
More informationConsider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is
CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationECE305: Fall 2017 Metal Oxide Semiconductor Devices
C305: Fall 2017 Metal Oxide Semiconductor Devices Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525530, 563599) Professor Peter Bermel lectrical and Computer ngineering Purdue
More informationLecture 12: MOSFET Devices
Lecture 12: MOSFET Devices GuYeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background
More informationMOS CAPACITOR AND MOSFET
EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture
More informationUniversity of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA
University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm 3 @
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationSECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University
NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationHomework Assignment No. 1  Solutions
Homework Assignment o. 1  Solutions Problem P1.7 This question is as easy as it looks, no tricks here. a. The delay from a to b is simply the delay of an inverter times the number of inverters which would
More informationLecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor
Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007
More informationChapter 7. The pn Junction
Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a Ptype substrate such that a layer of semiconductor is converted into N type. Converting
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationESE 570 MOS TRANSISTOR THEORY Part 2
ESE 570 MOS TRANSISTOR THEORY Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation CMOS = NMOS + PMOS 2 TwoTerminal MOS Capacitor > nmos Transistor VGS
More informationLecture 5: CMOS Transistor Theory
Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos IV Characteristics
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 1  The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ualwell TrenchIsolated
More informationVLSI Design The MOS Transistor
VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV
More informationPractice 3: Semiconductors
Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationLecture 2. Introduction to semiconductors Structures and characteristics in semiconductors
Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor pn junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More information1. The MOS Transistor. Electrical Conduction in Solids
Electrical Conduction in Solids!The band diagram describes the energy levels for electron in solids.!the lower filled band is named Valence Band.!The upper vacant band is named conduction band.!the distance
More informationDept. of Materials Science and Engineering. Electrical Properties Of Materials
Problem Set 12 Solutions See handout "Part 4: Heterojunctions MOS Devices" (slides 918) Using the Boise State Energy Band Diagram program, build the following structure: Gate material: 5nm p + Poly Si
More informationELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model
ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current
More informationECE 497 JS Lecture  12 Device Technologies
ECE 497 JS Lecture  12 Device Technologies Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density
More informationTransport in MetalOxideSemiconductor Structures
Engineering Materials Transport in MetalOxideSemiconductor Structures Mobile Ions Effects on the Oxide Properties Bearbeitet von Hamid Bentarzi 1. Auflage 2011. Buch. xiv, 106 S. Hardcover ISBN 978 3 642
More informationThe Devices. Devices
The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ FieldOxyde (SiO 2 ) psubstrate p+ stopper Bulk Contact CROSSSECTION of NMOS Transistor CrossSection of CMOS Technology MOS transistors
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More information1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :0011:00
1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:0011:00 INSTRUCTIONS: 1. Answer all seven (7) questions.
More information6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
More informationEE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania
1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION
More informationJFET/MESFET. JFET: small gate current (reverse leakage of the gatetochannel junction) More gate leakage than MOSFET, less than bipolar.
JFET/MESFET JFET: small gate current (reverse leakage of the gatetochannel junction) More gate leakage than MOSFET, less than bipolar. JFET has higher transconductance than the MOSFET. Used in lownoise,
More information! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)
ESE370: ircuitlevel Modeling, Design, and Optimization for Digital Systems Lec 7: September 20, 2017 MOS Transistor Operating Regions Part 1 Today! PN Junction! MOS Transistor Topology! Threshold! Operating
More information! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!
More informationLecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005
6.12 Microelectronic Devices and Circuits Fall 25 Lecture 8 1 Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oide Semiconductor Structure (cont.) Contents: October 4, 25 1. Overview
More informationSchottky diodes. JFETs  MESFETs  MODFETs
Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs  MESFETs  MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different
More informationECEN474/704: (Analog) VLSI Circuit Design Spring 2018
ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & MixedSignal Center exas A&M University Announcements If you haven t already, turn in your 0.18um
More informationLecture 7 MOS Capacitor
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 7 MOS Capacitor Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030
More informationClassification of Solids
Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples
More informationLecture 2. Introduction to semiconductors Structures and characteristics in semiconductors
Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor pn junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation
More informationLecture 17  pn Junction. October 11, Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium
6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 171 Lecture 17  pn Junction October 11, 22 Contents: 1. Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium
More informationEE105  Fall 2005 Microelectronic Devices and Circuits
EE105  Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationSemiconductor Integrated Process Design (MS 635)
Semiconductor Integrated Process Design (MS 635) Instructor: Prof. Keon Jae Lee  Office: 응용공학동 #4306, Tel: #3343  Email: keonlee@kaist.ac.kr Lecture: (Tu, Th), 1:002:15 #2425 Office hour: Tues & Thur
More informationUnified Compact Model for Generic DoubleGate
WCMMSM007 Workshop on Compact Modeling 10th International Conference on Modeling and Simulation of Microsystems Santa Clara, California, USA Unified Compact Model for Generic DoubleGate MOSFETs Xing
More informationL ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling
L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance
More informationEEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring
More informationnmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in Nwell.
nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in Nwell. nmosfet Schematic 0 y L n + source n + drain depletion region polysilicon gate x z
More informationMicroelectronics Part 1: Main CMOS circuits design rules
GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! medamine.miled@polymtl.ca!
More informationCourse Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance
Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationECE321 Electronics I
EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman ZarkeshHa Office: EE Bldg. 3B Office hours: Tuesday :3:PM or by appointment Email: payman@ece.unm.edu Slide: 1
More informationMOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor
MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste
More informationESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation
More information