Lecture 17  pn Junction. October 11, Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium


 Virginia Patrick
 4 years ago
 Views:
Transcription
1 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 171 Lecture 17  pn Junction October 11, 22 Contents: 1. Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium eading assignment: del Alamo, Ch. 7, ( )
2 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 172 Key questions What happens if you bring into intimate contact an ntype region and a ptype region? What happens to the electrostatics of a pn junction if one applies a bias accross? What are the dominant physics of current flow in a pn junction under bias? What underlies the rectifying behavior of the pn junction?
3 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 173 Motivation: pn junctions everywhere! Eample: CMOS PMOS NMOS n + p + n p+ n + n + p p + n
4 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Ideal pn junction in equilibrium p n E o E o χ W Sp W Sn χ E F E F Eo χ qφ bi Ec WSp Eo WSn χ EF Ev Ec Ev qφ bi = W Sp W Sn =(E C E F ) (E C E F ) = kt ln n o( ) n o ( ) Then: φ bi = kt q ln N DN A n 2 i
5 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture p ρ qnd n depletion approimation eact qna metallurgical junction p ε n p n εma φ dipole of charge φbi p n log po, no NA po no ND ni 2 NA ni 2 ND
6 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 176 Do depletion approimation: Volume charge density: ρ() ρ() qn A in pqn: < p in SC: p << Electric field: ρ() qn D in SC: << n ρ() in nqn: n < E() in pqn: p E() qn A ɛ ( + p) in SC: p E() qn D ( n ) in SC: n ɛ E() in nqn: n Electrostatic potential [select φ( = ) = ]: φ() qn A 2 p 2ɛ in pqn: p φ() qn A 2ɛ (2 +2 p ) in SC: p φ() qn D 2ɛ (2 2 n ) in SC: n φ() qn D 2 n 2ɛ in nqn: n
7 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 177 Two unknowns: n and p. demand overall charge neutrality: qn A p = qn D n potential difference across structure must be φ bi : Solve for n and p : φ( n ) φ( p )= qn D 2 n 2ɛ qn A 2 p 2ɛ = φ bi n = 2ɛN A φ bi qn D (N D + N A ) p = 2ɛN D φ bi qn A (N D + N A ) Total SC width: SC = 2ɛ(N D + N A )φ bi qn A N D Maimum electric field: E ma = 2qN A N D φ bi ɛ(n D + N A )
8 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 178 symmetric junction: N A = N D : p = n φ( p ) = φ( n ) asymmetric junction: i.e. N A >N D : p < n φ( p ) <φ( n ) strongly asymmetric junction: i.e. p + n junction N A N D : p n SC 2ɛφ bi qn D E ma 2qN Dφ bi ɛ the lowlydoped side controls everything φ( p ) φ( n ) φ bi
9 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 179 ρ qnd SC ε SC εma φ φbi SC EF Ec Ev
10 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Ideal pn junction out of equilibrium Electrostatics emember, battery grabs on majority carrier Fermi levels and splits them: qφ bi E F p n q(φ bi V) V E fp qv E fn E fp q(φ bi V) qv E fn In forward and reverse bias: φ bi φ bi V
11 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Qualitatively, electrostatics unchanged out of equilibrium use equilibrium equations: SC (V )= 2ɛ(N D + N A )(φ bi V ) V = SC (V =) 1 qn A N D φ bi E ma (V ) = 2qN A N D (φ bi V ) ɛ(n D + N A ) V = E ma (V =) 1 φ bi ρ qnd p(v) n(v) qna V> V= V< ε ε ma (V) φ φbiv φbi φbiv
12 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Depletion capacitance Think differentially: ρ p n qn D p(v) Q Q ρ + Q +Q qna Q n(v) V V+ V p(v) n(v) Q C(V )= ɛ SC (V ) Then: C(V )= ɛqn A N D 2(N D + N A )(φ bi V ) = C(V =) 1 V φ bi
13 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture C(V )= ɛqn A N D 2(N D + N A )(φ bi V ) C(V =) = 1 V φ bi For p + n junction: C(V )= ɛqn D 2(φ bi V ) Capacitance dominated by lowlydoped side Technique to etract φ bi and N low : 1 C 2 = 2(φ bi V ) ɛqn D Q C 1 C 22 εqn D φ bi V φ bi V φ bi V C
14 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Eperimental verification:
15 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture IV characteristics F e = a) equilibrium F h = Fe b) forward bias Fh Fe c) reverse bias Fh
16 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture In TE: balance between electron and hole flows across SC balance between and in QN s I = In forward bias: energy barrier to minority carriers reduced minority carrier injection >in QN s I e qv/kt In reverse bias: energy barrier to minority carriers increased minority carrier etraction >in QN s I saturates to a small value
17 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Key thinking to construct model for IV characteristics: junction voltage sets concentration of carriers with enough energy to get injected; rate of carrier injection set by minority carrier transport and / rates in quasineutral regions; SC is in quasiequilibrium. Fe Fh
18 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture F e F h p n Strategy for deriving firstorder model for IV characteristics: Compute diode current density as follows: J = J e ( p )+J h ( n ) Compute each minority carrier current contribution as follows: J e ( p ) = qn ( p )v e ( p ) J h ( n ) = qp ( n )v h ( n ) Use epressions of v e ( p ) and v h ( n ) derived for similar minority carrier type problems in Ch. 5. Derive epressions for n ( p ) and p ( n ) assuming quasiequilibrium across the spacecharge region. Unified result for forward and reverse bias.
19 6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture Key conclusions Builtin potential of pn junction: φ bi = kt q ln N DN A n 2 i Depletion approimation: two quasineutral regions separated by a spacecharge region. In strongly asymmetric junction electrostatics dominated by region with lowest doping level; i.e. for p + n junction: SC 2ɛφ bi E ma qn D 2qN Dφ bi ɛ Electrostatics out of equilibrium same as in TE if φ bi φ bi V. Depletion capacitance due to SC width modulation: C(V )= ɛ SC (V ) Forward bias: junction barrier carrier injection recombination in QN s I e qv/kt everse bias: junction barrier carrier etraction generation in QN s I saturates with reverse V
Lecture 6  PN Junction and MOS Electrostatics (III) Electrostatics of pn Junction under Bias February 27, 2001
6.012 Microelectronic Devices and Circuits Spring 2001 Lecture 61 Lecture 6 PN Junction and MOS Electrostatics (III) Electrostatics of pn Junction under Bias February 27, 2001 Contents: 1. electrostatics
More informationLecture 20  pn Junction (cont.) October 21, Nonideal and secondorder effects
6.70J/3.43J  Integrated Microelectronic Devices  Fall 00 Lecture 01 Lecture 0  pn Junction (cont.) October 1, 00 Contents: 1. Nonideal and secondorder effects Reading assignment: del Alamo, Ch.
More informationLecture 15  The pn Junction Diode (I) IV Characteristics. November 1, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 151 Lecture 15  The pn Junction Diode (I) IV Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. IV characteristics
More informationElectrical Characteristics of MOS Devices
Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Thresholdvoltage
More informationLecture 16  The pn Junction Diode (II) Equivalent Circuit Model. April 8, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 161 Lecture 16  The pn Junction Diode (II) Equivalent Circuit Model April 8, 2003 Contents: 1. IV characteristics (cont.) 2. Smallsignal
More informationChapter 7. The pn Junction
Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a Ptype substrate such that a layer of semiconductor is converted into N type. Converting
More informationLecture 7  Carrier Drift and Diffusion (cont.) February 20, Nonuniformly doped semiconductor in thermal equilibrium
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 71 Lecture 7  Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Nonuniformly doped semiconductor in thermal equilibrium
More informationSchottky Rectifiers Zheng Yang (ERF 3017,
ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 MetalSemiconductor Contact The work function
More informationLecture 13  Carrier Flow (cont.), MetalSemiconductor Junction. October 2, 2002
6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 131 Contents: Lecture 13  Carrier Flow (cont.), MetalSemiconductor Junction October 2, 22 1. Transport in spacecharge and highresistivity
More informationSemiconductor Junctions
8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
More informationElectronic Devices and Circuits Lecture 5  pn Junction Injection and Flow  Outline
6.012  Electronic Devices and Circuits Lecture 5  pn Junction Injection and Flow  Outline Review Depletion approimation for an abrupt pn junction Depletion charge storage and depletion capacitance
More informationLecture 7  PN Junction and MOS Electrostatics (IV) Electrostatics of MetalOxideSemiconductor Structure. September 29, 2005
6.12  Microelectronic Devices and Circuits  Fall 25 Lecture 71 Lecture 7  PN Junction and MOS Electrostatics (IV) Electrostatics of MetalOideSemiconductor Structure September 29, 25 Contents: 1.
More informationLecture 8  Carrier Drift and Diffusion (cont.) September 21, 2001
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2001 Lecture 81 Lecture 8  Carrier Drift and Diffusion (cont.) September 21, 2001 Contents: 1. Nonuniformly doped semiconductor in thermal equilibrium
More informationLecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005
6.12 Microelectronic Devices and Circuits Fall 25 Lecture 8 1 Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oide Semiconductor Structure (cont.) Contents: October 4, 25 1. Overview
More informationSemiconductor Physics and Devices
The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation
More informationFor the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.
Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The
More informationConsider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is
CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.
More informationLecture 16 The pn Junction Diode (III)
Lecture 16 The pn Junction iode (III) Outline I V Characteristics (Review) Small signal equivalent circuit model Carrier charge storage iffusion capacitance Reading Assignment: Howe and Sodini; Chapter
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003
6.012  Microelectronic Devices and Circuits  Spring 2003 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium February 13, 2003
More informationWeek 3, Lectures 68, Jan 29 Feb 2, 2001
Week 3, Lectures 68, Jan 29 Feb 2, 2001 EECS 105 Microelectronics Devices and Circuits, Spring 2001 Andrew R. Neureuther Topics: M: Charge density, electric field, and potential; W: Capacitance of pn
More informationn N D n p = n i p N A
Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donordoped semiconductor: n N D where N D is the concentration of donor impurity Acceptordoped
More informationSemiconductor Device Physics
1 emiconductor Device Physics Lecture 8 http://zitompul.wordpress.com 2 0 1 3 emiconductor Device Physics 2 M Contacts and chottky Diodes 3 M Contact The metalsemiconductor (M) contact plays a very important
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationECE305: Spring 2018 Exam 2 Review
ECE305: Spring 018 Exam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75138) Chapter 5 (pp. 1956) Professor Peter Bermel Electrical and Computer Engineering Purdue University,
More informationLecture 15 The pn Junction Diode (II)
Lecture 15 The pn Junction Diode (II IV characteristics Forward Bias Reverse Bias Outline Reading Assignment: Howe and Sodini; Chapter 6, Sections 6.46.5 6.012 Spring 2007 Lecture 15 1 1. IV Characteristics
More informationSample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013
Sample Exam # 2 ECEN 3320 Fall 203 Semiconductor Devices October 28, 203 Due November 4, 203. Below is the capacitancevoltage curve measured from a Schottky contact made on GaAs at T 300 K. Figure : Capacitance
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationLecture 04 Review of MOSFET
ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:304:30
More informationLecture 35  Bipolar Junction Transistor (cont.) November 27, Currentvoltage characteristics of ideal BJT (cont.)
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2002 Lecture 351 Lecture 35  Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Currentvoltage characteristics of ideal BJT (cont.)
More informationLecture 19  pn Junction (cont.) October 18, Ideal pn junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2002 Lecture 191 Lecture 19  pn Junction (cont.) October 18, 2002 Contents: 1. Ideal pn junction out of equilibrium (cont.) 2. pn junction diode:
More informationLecture 8  Carrier Drift and Diffusion (cont.), Carrier Flow. February 21, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 81 Lecture 8  Carrier Drift and Diffusion (cont.), Carrier Flow February 21, 2007 Contents: 1. QuasiFermi levels 2. Continuity
More informationFundamentals of Semiconductor Physics
Fall 2007 Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics xinwan@zimp.zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Transistor technology evokes new physics The objective of
More informationSession 6: Solid State Physics. Diode
Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between
More information( )! N D ( x) ) and equilibrium
ECE 66: SOLUTIONS: ECE 66 Homework Week 8 Mark Lundstrom March 7, 13 1) The doping profile for an n type silicon wafer ( N D = 1 15 cm  3 ) with a heavily doped thin layer at the surface (surface concentration,
More informationPHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS Tennessee Technological University Wednesday, October 30, 013 1 Introduction Chapter 4: we considered the
More informationPeak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,
Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationLecture 9  Carrier Drift and Diffusion (cont.), Carrier Flow. September 24, 2001
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2001 Lecture 91 Lecture 9  Carrier Drift and Diffusion (cont.), Carrier Flow September 24, 2001 Contents: 1. QuasiFermi levels 2. Continuity
More informationLecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)
Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.) Outline 1. Overview of MOS electrostatics under bias 2. Depletion regime 3. Flatband 4. Accumulation regime
More informationPHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor
More informationLecture 12: MOS Capacitors, transistors. Context
Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those
More informationLecture 22  The Si surface and the MetalOxideSemiconductor Structure (cont.) April 2, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 221 Lecture 22  The Si surface and the MetalOxideSemiconductor Structure (cont.) April 2, 2007 Contents: 1. Ideal MOS structure
More informationρ ρ LED access resistances d A W d s n s p p p W the output window size player d p series access resistance d n nlayer series access resistance
LED access resistances W the output window size player series access resistance d p nlayer series access resistance d n The nlayer series access resistance R = ρ s n where the resistivity of the nlayer
More informationECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University
NAME: PUID: : ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University This is a closed book exam You may use a calculator and the formula sheet Following the ECE policy, the calculator
More informationSchottky diodes. JFETs  MESFETs  MODFETs
Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs  MESFETs  MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationEE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level
EE 13 Intro to S Junctions eek 6 Notes Problem 1 hat is the work function? Energy to ecite electron from Fermi level to the vacuum level Electron affinity of 4.5eV Electron affinity of Ge 4.eV orkfunction
More informationThermionic emission vs. driftdiffusion vs. pn junction
6.772/SMA5111  Compound Semiconductors Lecture 4  Carrier flow in heterojunctions  Outline A look at current models for ms junctions (old business) Thermionic emission vs. driftdiffusion vs. pn junction
More informationLecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure
Lecture 6 PN Junction and MOS Electrostatics(III) MetalOxideSemiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with
More informationBipolar junction transistor operation and modeling
6.01  Electronic Devices and Circuits Lecture 8  Bipolar Junction Transistor Basics  Outline Announcements Handout  Lecture Outline and Summary; Old eam 1's on Stellar First Hour Eam  Oct. 8, 7:309:30
More informationLecture 10  Carrier Flow (cont.) February 28, 2007
6.720J/3.43J Integrated Microelectronic Devices  Spring 2007 Lecture 101 Lecture 10  Carrier Flow (cont.) February 28, 2007 Contents: 1. Minoritycarrier type situations Reading assignment: del Alamo,
More informationMidterm I  Solutions
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2008 Professor Chenming Hu Midterm I  Solutions Name: SID: Grad/Undergrad: Closed
More informationPN Junctions. Lecture 7
Lecture 7 PN Junctions Kathy Aidala Applied Physics, G2 Harvard University 10 October, 2002 Wei 1 Active Circuit Elements Why are they desirable? Much greater flexibility in circuit applications. What
More informationECE321 Electronics I
ECE321 Electronics I Lecture 4: Physics of Semiconductor iodes Payman ZarkeshHa Office: ECE Bldg. 230B Office hours: Tuesday 2:003:00PM or by appointment Email: pzarkesh.unm.edu Slide: 1 Review of Last
More informationjunctions produce nonlinear current voltage characteristics which can be exploited
Chapter 6 PN DODES Junctions between nand ptype semiconductors are extremely important foravariety of devices. Diodes based on pn junctions produce nonlinear current voltage characteristics which can
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationDepartment of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on Feb. 15, 2018 by 7:00 PM
Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 018 Homework 3 Due on Feb. 15, 018 by 7:00 PM Suggested Readings: a) Lecture notes Important Note:
More informationV BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.
Consider the the band diagram for a homojunction, formed when two bits of the same type of semicondutor (e.g. Si) are doped p and ntype and then brought into contact. Electrons in the two bits have different
More informationEffective masses in semiconductors
Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017
NAME: PUID: ECE 305 Fall 017 Final Exam (Exam 5) Wednesday, December 13, 017 This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy,
More information8. Schottky contacts / JFETs
Technische Universität Graz Institute of Solid State Physics 8. Schottky contacts / JFETs Nov. 21, 2018 Technische Universität Graz Institute of Solid State Physics metal  semiconductor contacts Photoelectric
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationMetal Semiconductor Contacts
Metal Semiconductor Contacts The investigation of rectification in metalsemiconductor contacts was first described by Braun [3335], who discovered in 1874 the asymmetric nature of electrical conduction
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are
More informationECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:
ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: Depletion Approximation Step Junction Things you should know when you leave Key Questions What is the space charge region? What are the
More informationPHYS208 PN Junction. Olav Torheim. May 30, 2007
1 PHYS208 PN Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density
More informationESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15
ESE 570 MOS TRANSISTOR THEORY Part 1 TwoTerminal MOS Structure 2 GATE Si Oxide interface n n Mass Action Law VB 2 Chemical Periodic Table Donors American Chemical Society (ACS) Acceptors Metalloids 3 Ideal
More information1st YearComputer Communication EngineeringRUC. 4 PN Junction
4 PN Junction We begin our study of semiconductor devices with the junction for three reasons. (1) The device finds application in many electronic systems, e.g., in adapters that charge the batteries
More informationBandbending. EE 436 bandbending 1
Bandbending In the pn junction and BJT, we saw that the semiconductor band edges were bent in the depletion layers. We used the depletion approximation and Poisson s equation to relate the bandbending
More informationMicroelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5 
6.012  Microelectronic Devices and Circuits Lecture 9  MOS Capacitors I  Outline Announcements Problem set 5  Posted on Stellar. Due net Wednesday. Qualitative description  MOS in thermal equilibrium
More informationFIELDEFFECT TRANSISTORS
FIELEFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancementtype NMOS transistor 3 IV characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation
More informationMTLE6120: Advanced Electronic Properties of Materials. Semiconductor pn junction diodes. Reading: Kasap ,
MTLE6120: Advanced Electronic Properties of Materials 1 Semiconductor pn junction diodes Reading: Kasap 6.16.5, 6.96.12 Metalsemiconductor contact potential 2 ptype ntype ptype ntype Same semiconductor
More informationLecture 23  The Si surface and the MetalOxideSemiconductor Structure (cont.) April 4, 2007
6.720J/3.43J Integrated Microelectronic Devices Spring 2007 Lecture 231 Lecture 23 The Si surface and the MetalOxideSemiconductor Structure (cont.) April 4, 2007 Contents: 1. Ideal MOS structure under
More informationDepartment of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM
Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 2018 Homework 4 Due on March 01, 2018 at 7:00 PM Suggested Readings: a) Lecture notes Important Note:
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at
More informationSemiconductor Physics. Lecture 6
Semiconductor Physics Lecture 6 Recap pn junction and the depletion region Driven by the need to have no gradient in the fermi level free carriers migrate across the pn junction leaving a region with few
More informationClassification of Solids
Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples
More informationLecture 5  Carrier generation and recombination (cont.) September 12, 2001
6.720J/3.43J  Integrated Microelectronic Devices  Fall 2001 Lecture 51 Contents: Lecture 5  Carrier generation and recombination (cont.) September 12, 2001 1. G&R rates outside thermal equilibrium
More informationCHAPTER 4: PN P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki
CHAPTER 4: PN P N JUNCTION Part 2 Part 2 Charge Storage & Transient Behavior Junction Breakdown Heterojunction CHARGE STORAGE & TRANSIENT BEHAVIOR Once injected across the junction, the minority carriers
More informationSchottky Diodes (MS Contacts)
Schottky Diodes (MS Contacts) Three MITs of the Day Band diagrams for ohmic and rectifying Schottky contacts Similarity to and difference from bipolar junctions on electrostatic and IV characteristics.
More informationFYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries
Faculty of Science and Technology Exam in: FYS 3028/8028 Solar Energy and Energy Storage Date: 11.05.2016 Time: 913 Place: Åsgårdvegen 9 Approved aids: Type of sheets (sqares/lines): Number of pages incl.
More informationLecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007
6.720J/3.43J  Integrated Microelectronic Devices  Spring 2007 Lecture 291 Lecture 29  The Long MetalOxideSemiconductor FieldEffect Transistor (cont.) April 20, 2007 Contents: 1. Nonideal and secondorder
More informationEE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions
EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 pn Junction ptype semiconductor in
More informationIntroduction to Power Semiconductor Devices
ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More informationECE 305 Exam 3: Spring 2015 March 6, 2015 Mark Lundstrom Purdue University
NAME: PUID: : ECE 305 Exam 3: March 6, 2015 Mark Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula sheet at the end of this exam Following the ECE policy,
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationPhysics of Semiconductors 8 th
Physics of Semiconductors 8 th 2016.6.6 Shingo Katsumoto Department of Physics, Institute for Solid State Physics University of Tokyo Review of pn junction Estimation of builtin potential Depletion layer
More informationLecture 5 Junction characterisation
Lecture 5 Junction characterisation Jon Major October 2018 The PV research cycle Make cells Measure cells Despair Repeat 40 1.1% 4.9% Data Current density (ma/cm 2 ) 20 020 1.00.5 0.0 0.5 1.0 Voltage
More informationThe Three terminal MOS structure. Semiconductor Devices: Operation and Modeling 115
The Three terminal MOS structure 115 Introduction MOS transistor two terminal MOS with another two opposite terminal (back to back of inversion layer). Theses two new terminal make the current flow if
More informationInstitute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:0011:00 P2
Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:0011:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,
More informationECE 340 Lecture 27 : Junction Capacitance Class Outline:
ECE 340 Lecture 27 : Junction Capacitance Class Outline: Breakdown Review Junction Capacitance Things you should know when you leave M.J. Gilbert ECE 340 Lecture 27 10/24/11 Key Questions What types of
More informationECE 340 Lecture 21 : PN Junction II Class Outline:
ECE 340 Lecture 21 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More informationBJT  Mode of Operations
JT  Mode of Operations JTs can be modeled by two backtoback diodes. N+ P N N+ JTs are operated in four modes. HO #6: LN 251  JT M Models Page 1 1) Forward active / normal junction forward biased junction
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor
More information2.626 Fundamentals of Photovoltaics
MIT OpenCourseWare http://ocw.mit.edu 2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Charge Separation:
More information6.012 Electronic Devices and Circuits
Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3
More information