BJT Biasing Cont. & Small Signal Model
|
|
- Barbra Ray
- 2 years ago
- Views:
Transcription
1 BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1
2 Emitter Feedback Bias Design Voltage bias circuit Single power supply version 2
3 Thevinen Equivalent Use Thevinen's theorem: h =V B = R 2 R 1 R 2 V CC Let: = R 1 R 2 V B = 1 1 V CC R B = R 1 R 2 R 1 R 2 = R 1 1 Since we specify V B and R B, the inverse is needed: 1 1 = V B V CC = V CC V B 1 R 1 = 1 R B R 2 = R 1 3
4 5.Or choose R T =R 1 R 2 = V CC I 1 = V CC I C /10 Conservative Bias Procedure: 1. Bias so that V CC is split equally across R C, V CE (or V CB ), and R E. 2. Select desired collector current. 3. Assume I E = I C to determine R C and R E. 4. Add 0.7 volts to V CC /3 to find V BG. Assume base current through R B is negligible; hence V B V BG 5. Choose R B approximately equal to R E /10. (Use lowest value of #" 6. Finally, compute R 1 and R 2. 4
5 Example V CC =12V. V RE =V RC =4V. I C =1 ma. Then: R C =R E = =4 103 =4 k V B =4 0.7=4.7V. R B = 1 R min E = =20 K For a single power supply: = V CC 1= 12 V B 4.7 1=1.55 R 1 = 1 R B = =51k R 2 = R 1 = =32.9 k 5
6 Completed Bias Design Electronics Workbench simulation results Our design differs from the simulation because we neglected the base current. 4.7 V 1 ma There is no point in including this current, since we will build the circuit using resistors that come only in standard sizes and with 5% tolerances attached to their values. The closest available resistors in the RCA Lab are 47k, 33k, and 3.3k. 6
7 BJT Small Signal Models Conceptually, the signal we wish to amplify is connected in series with the bias source and is of quite small amplitude. We will linearize the signal analysis to simplify our mathematics to avoid having to deal with the nonlinear exponential collector characteristic. 7
8 Linearization Process Split the total base-emitter voltage and total collector current into bias and signal components: v BE V i C =I C =I S e T =I S e V BE =I S e V BE V e T Identify and substitute the bias current into the expression: i C =I C e Expand the exponential in a Taylor series: I C f x = n=0 f n 0 xn n! 8
9 Analysis Using Collector Current Model i C =I C e i C I C =e log 10 i C I = v be C log 10e Let i C be doubled, i.e. i : 0.301= v C / I C =2 be V T = V. Useful constants: log 10 2 =0.301 log 10 e =
10 Linearization Using Taylor Series Expand in a Taylor series: For the exponential function: e x = or: e = n=0 V e T v n be n! 2 f x = n=0 n=0 1 v 3 be 6 f n 0 xn n! x n n! 10
11 Linearization Continued Recall: of about 17 mv causes a 2x change in collector current. Let's expand in Taylor series for this value of. = =0.68 V e T = V e T = Compare with: e 0.68 =1.973 Four term expansion is accurate to about 1.5%, two term expansion is only accurate to about 15%, i.e. 0.17V is not sucha small signal 11
12 Small Signal Model Using the grouping into bias and signal voltages/currents: i C =I C e And using the first two terms of the Taylor series expansion: i C I C 1 1 =I C I C =I C We define transconductance and incremental (or ac) current as: bias current g m = I C =g m 12
13 Incremental (small-signal) BJT Model i B =I B = 1 i C= 1 I C i B = 1 i C= 1 I C 1 I C V T Define the incremental base current and base resistance: = 1 = 1 I C V = 1 v T r be bias current = I C = g m 13
14 Equivalent Models Equations (1): =g m = i e = Equations (2): = = i e 1 i e = 1 = 1 = r e Equations (3): =g m = i e = =g m = I C I C = r e = 1 = 1 I C Choose the model that simplifies the circuit analysis. 14
15 b Equations (1): r π r 0 e =g m v ce r 0 g m = I C i e = ESE319 Introduction to Microelectronics Equivalent Circuits b Equations (2): Equations (3): g m g m v r 0 be r 0 = V A I C = = I B g m i e = c i e r e e = v ce = i e 1 i e = r e r 0 r e = I E = g m = 1 r 0 c b e =g m v ce r 0 = i e i e = c 15
16 Small Signal Circuit Analysis The small signal model will replace the large signal model and be used for (approximate) signal analysis once the transistor is biased. we may include Rs with Rb b c π g m e i e v c Transistor Biased circuit (and all bypass caps are approx short circuits) 16
17 Biased Circuit Small Signal Analysis v sig = R B i e R E v sig = R B 1 R E i e v c = v sig R B 1 R E Let: =100 and I C =1 ma = = =2.5 k I C Note: g m = I C = A =0.04 S=40 ms V = = v R B 1 R sig E S = siemen 17
18 Small Signal Analysis - Continued i e v c = = v R B 1 R sig E g m =g m = v R B 1 R sig E R v c = R C = C v R B 1 R sig E g m = I C I C = 100 R E R B v c R C 1 R E v sig A v = v c v sig R C R E 18
19 Multisim Model of Bias Design A v = v c v sig R C R E = 1 1. R E needs to be large to achieve good op. pt. Stability! 2. Consequence: A v is low. 19
20 Multisim Input-output Plot A v = v c v sig R C R E = 1 20
21 Conclusions Conservative voltage bias for best operating point stability and signal swing works, but returns unity voltage gain. How does one obtain operating point stability, and simultaneously achieve a respectable voltage gain? 21
BJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier
Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -
Biasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th
ESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
Class AB Output Stage
Class AB Output Stage Class AB amplifier Operation Multisim Simulation - VTC Class AB amplifier biasing Widlar current source Multisim Simulation - Biasing 1 Class AB Operation v I V B (set by V B ) Basic
Chapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor
EE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
ESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
Chapter 13 Small-Signal Modeling and Linear Amplification
Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors
Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
Tutorial #4: Bias Point Analysis in Multisim
SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs
CHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
EE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
Homework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
Circle the one best answer for each question. Five points per question.
ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
Chapter 2. - DC Biasing - BJTs
Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
figure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
Bipolar Junction Transistor (BJT) - Introduction
Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
Electronic Circuits Summary
Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier
Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:
Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction
As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR
LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both
1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
Chapter 2 - DC Biasing - BJTs
Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
CE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
Mod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
Switching circuits: basics and switching speed
ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V
PHYS225 Lecture 9. Electronic Circuits
PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current
Mod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
(Refer Slide Time: 1:49)
Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide
(Refer Slide Time: 1:41)
Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 13 Module no 01 Midband Analysis of CB and CC Amplifiers We are
The Common-Emitter Amplifier
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The Common-Emitter Amplifier Basic Circuit Fig. shows the circuit diagram
Forward-Active Terminal Currents
Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.
ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
Lecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
Electronics II. Midterm #1
The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem
Transistor Characteristics and A simple BJT Current Mirror
Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current
ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION
ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
Chapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance
Homework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
Junction Bipolar Transistor. Characteristics Models Datasheet
Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,
Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,
Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -
6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large
Section 1: Common Emitter CE Amplifier Design
ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open
ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model
Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1
ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS
EE 2201 PRELAB 5B BIPOLAR JUNTION TRANSISTOR (BJT) FUNDAMENTALS P1. β Meter The circuit of Figure P51 can be used to measure the current gain β of the BJT. Determine values for resistors R1 and R2 to meet
7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING
à 7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING Figure. AC coupled common emitter amplifier circuit ü The DC Load Line V CC = I CQ + V CEQ + R E I EQ I EQ = I CQ + I BQ I
Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE
lectronic ircuits Transistor Bias ircuits Manar Mohaisen Office: F208 mail: manar.subhi@kut.ac.kr Department of Review of the Precedent Lecture Bipolar Junction Transistor (BJT) BJT haracteristics and
Device Physics: The Bipolar Transistor
Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing
Electronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm - StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm
Engineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties
Engineering 60 Spring 0 Answers to Homework # 4 Biasing and Small Signal Properties.).) The in-band Thevenin equivalent source impedance is the parallel combination of R, R, and R3. ( In-band implies the
University of Pittsburgh
University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:
Electronics II. Midterm II
The University of Toledo su7ms_elct7.fm - Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm - Problem 7 points Equation (-)
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a
Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
Bipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors
Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007
Transistor amplifiers: Biasing and Small Signal Model
Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT
Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs
EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,
Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices
Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage
6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
The BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
At point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS
CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators
ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)
ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
FYSE400 ANALOG ELECTRONICS
YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and -Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N
Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
PROBLEMS FOR EXPERIMENT ES: ESTIMATING A SECOND Solutions
Massachusetts Institute of Technology Physics Department 801X Fall 2002 PROBLEMS FOR EXPERIMENT ES: ESTIMATING A SECOND Solutions Problem 1: Use your calculator or your favorite software program to compute
Introduction to Transistors. Semiconductors Diodes Transistors
Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms
Prof. Paolo Colantonio a.a
Prof. Paolo olantonio a.a. 2011 12 The D bias point is affected by thermal issue due to the active device parameter variations with temperature I 1 I I 0 I [ma] V R } I 5 } I 4 } I 3 Q 2 } I 2 Q 1 } I
VI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution
. (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority
EE105 - Fall 2006 Microelectronic Devices and Circuits
EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything
EECS 105: FALL 06 FINAL
University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last
EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET
EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically
Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics
6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 19-1 Lecture 19 - p-n Junction (cont.) October 18, 2002 Contents: 1. Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode:
6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
Exercise: 4. 1 converges. 1. The series. (D) e. (A) 2 ln 2 (C) 2 (B) 2. equal to. 4. If. a and b equation. d x 2. (D) ae 2t. (A) ae t.
Exercise: 4 1. The series n 1 = 0 n! converges to (A) ln (B) (C) (D) e. The magnitude of the gradient for the function f(x, y, z) = x =3y +z 3 at the point (1, 1, 1) is. 3. Let X be a zero mean unit variance
ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution
ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
Half-circuit incremental analysis techniques
6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor
Operational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and
Fig. 1 Simple BJT (NPN) current mirror and its test circuit
1 Lab 01: Current Mirrors Total 30 points: 20 points for lab, 5 points for well-organized report, 5 points for immaculate circuit on breadboard Note: There are two parts for this lab. You must answer the
Homework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal
FET Small-Signal Analysis
CHAPTER FET mall-ignal Analysis 9 9.1 INTROUCTION Field-effect transistor amplifiers provide an excellent voltage gain with the added feature of a high input impedance. They are also considered low-power
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D)
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) Most of the content is from the textbook: Electronic devices and circuit theory, Robert
Electronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I su4ms_elct7.fm Section Electronics II Midterm # Problems Points. 8. 7 3. 5 Total 0 Was the exam fair? yes no The University of Toledo su4ms_elct7.fm Problem
ECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First
13. Bipolar transistors
Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector
Charge-Storage Elements: Base-Charging Capacitance C b
Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers
R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai
Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit
Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)
6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 35-1 Lecture 35 - Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Current-voltage characteristics of ideal BJT (cont.)