Erik Lind

Size: px
Start display at page:

Download "Erik Lind"

Transcription

1 High-Speed Devices, 2011 Erik Lind Course consists of: 30 h Lectures (H322, and Fys B check schedule) 8h Excercises 2x2h+4h Lab Excercises (2 Computer simulations, 4 RF measurment lab) Written report on device performance (2-3 pages), w/ 10 min oral presentation Written Exam (15/12) Course Material Fundamentals of III-V Devices, William Liu ppt-slides from lectures Course Homepage - Download and bring slides to the lectures!! 1

2 My Background M.Sc. in Engineering Physics (2000) Ph.D. in Solid State Physics 2004 Post Doc at UC Santa Barbara, Assistant Professor Solid State Physics Ph.D.: Tunneling devices, (Quantum dots, SiGe Esaki tunnel diodes, and Resonant Tunneling diodes/transistors) Post Doc: High-speed InP/InGaAs DHBTs (500+ GHz f t, f max ) Currently: InAs nanowire transistors, UWB sources, III-V MOSFETs 2

3 Locations My office: C367 EIT k-space Introduction, High Speed Devices 2011

4 Course Contents Review of basic semiconductor physics (no real derivations), Carrier statistics, Transport & Continuity Equations, Electrostatics (2) Heterojunctions, especially pn-heterojunctions (2) Heterobipolar transistors (HBTs) DC and AC operation (4) Heterostructure Field Effect Transistors (HFET, HEMT) DC and AC operation (3) Device Scaling Laws (HBTs and HFETs) (1) Ballistic FETs (1) Resonant Tunneling Diodes (1) 4

5 Course Goals Device Physics : Heterojunctions Heterojunction Bipolar Transistor Field Effect Transistors Semiconductor Physics: Electrostatics Electron Transport Eqs. Electron Dynamic Eqs. High Freuency Behaviour: Functionallity Design Scaling laws Material Science: Bandgaps, Heterojunctions, Mobilities 5

6 Project Illustrate state-of-the-art device performance Litterature Study on different type of devices Present your finding to the other students, 10 min or so. 6

7 Laborations 2 Computer labs: Simulate HBT and FET using TCAD program (2x2 h). 1 Device analysis lab. Measure high frequency parameters, extract certain device parameters. Lab report, gives bonus points on exam (1x4 h). 7

8 Heterostructure Bipolar Transistor (HBT) InP Emitter (n + ) InGaAs Base (p ++ ) InP Collector (n) Similar to ordinary BJT Uses large bandgap emitter Very high base-doping > Low base resistance! pn junctions Diffusion Across the base Quasi Fermi Levels Drift in the collector E c E c E c E v E v 8

9 Heterostructure Field Effect Transistor / High Electron Mobility Transistor (HFET/HEMT) Source V gs V ds Wide bandgap w/ doping Wide bandgap w/o doping Narrow Bandgap channel w/o doping x Gate Contact Wide Bandgap Small bandgap channel High mobility! Similar to ordinary MOSFET Utilizes a large bandgap as isolation Moves mobile channel charge away from oxide interface & any doping Very high mobility!! E f Drift current, velocity saturation and ballistic transport 9

10 Physical realization HBT HFET 62.5 nm Who to connect between: Material science Semiconductor Physics Models for circuit design! 10

11 2 minute exercise - linearization df ( x) f ( x x) f ( x) ( x) x dx i ds =f(v ds ) v ds v i g d V I i v v i 11

12 Important device metrics I ds =f(v gs,v ds ) V ds V gs Small signal analysis: v V v, i I i i f ( v, v GS ) f ( V, V GS f ) v GS V v GS f v V GS v Transconductance: g m g d :Output conductance 12

13 Voltage Gain (db) High speed design: Common-source amplifier V ds R L 15 3dB point v o 10 v i Frequency (Hz) Voltage gain: A v f v v o i g m R L, eq 1 jr g C gs 1 1 g m R L, eq C gd DC-gain High gain, large 3dB roll off point: Large g m, small g d, small C s! Meyer, Gray: Chapter 7 13

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

Lecture 3: Transistor as an thermonic switch

Lecture 3: Transistor as an thermonic switch Lecture 3: Transistor as an thermonic switch 2016-01-21 Lecture 3, High Speed Devices 2016 1 Lecture 3: Transistors as an thermionic switch Reading Guide: 54-57 in Jena Transistor metrics Reservoir equilibrium

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w Prof. Jasprit Singh Fall 2001 EECS 320 Homework 11 The nals for this course are set for Friday December 14, 6:30 8:30 pm and Friday Dec. 21, 10:30 am 12:30 pm. Please choose one of these times and inform

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Transistor Noise Lecture 14, High Speed Devices

Transistor Noise Lecture 14, High Speed Devices Transistor Noise 016-03-03 Lecture 14, High Speed Devices 016 1 Transistor Noise A very brief introduction 016-03-0 Lecture 13, High Speed Devices 016 Summary hybrid p Noise is a randomly varying voltage/current

More information

Typical example of the FET: MEtal Semiconductor FET (MESFET)

Typical example of the FET: MEtal Semiconductor FET (MESFET) Typical example of the FET: MEtal Semiconductor FET (MESFET) Conducting channel (RED) is made of highly doped material. The electron concentration in the channel n = the donor impurity concentration N

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Transistor Noise Lecture 10 High Speed Devices

Transistor Noise Lecture 10 High Speed Devices Transistor Noise 1 Transistor Noise A very brief introduction to circuit and transistor noise. I an not an expert regarding noise Maas: Noise in Linear and Nonlinear Circuits Lee: The Design of CMOS RFIC

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

13. Bipolar transistors

13. Bipolar transistors Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

EE236 Electronics. Computer and Systems Engineering Department. Faculty of Engineering Alexandria University. Fall 2014

EE236 Electronics. Computer and Systems Engineering Department. Faculty of Engineering Alexandria University. Fall 2014 EE236 Electronics Computer and Systems Engineering Department Faculty of Engineering Alexandria University Fall 2014 Lecturer: Bassem Mokhtar, Ph.D. Assistant Professor Department of Electrical Engineering

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Lecture 11: J-FET and MOSFET

Lecture 11: J-FET and MOSFET ENE 311 Lecture 11: J-FET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017 NAME: PUID: ECE 305 Fall 017 Final Exam (Exam 5) Wednesday, December 13, 017 This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy,

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2 Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:00-11:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

Session 0: Review of Solid State Devices. From Atom to Transistor

Session 0: Review of Solid State Devices. From Atom to Transistor Session 0: Review of Solid State Devices From Atom to Transistor 1 Objective To Understand: how Diodes, and Transistors operate! p n p+ n p- n+ n+ p 2 21 Century Alchemy! Ohm s law resistivity Resistivity

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

Recitation 17: BJT-Basic Operation in FAR

Recitation 17: BJT-Basic Operation in FAR Recitation 17: BJT-Basic Operation in FAR BJT stands for Bipolar Junction Transistor 1. Can be thought of as two p-n junctions back to back, you can have pnp or npn. In analogy to MOSFET small current

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Memories Bipolar Transistors

Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Exams February 5 March 7 April 18 June 27 Exam Four

More information

Concepts & Equations. Applications: Devices

Concepts & Equations. Applications: Devices Concepts & Equations Applications: Devices Concepts & Equations Applications: Devices Current = (charge) x (velocity) Ch1-4 Ch5-6 Concepts & Equations Applications: Devices Concepts & Equations Ch1 Landscape

More information

EE 3329 Electronic Devices Syllabus ( Extended Play )

EE 3329 Electronic Devices Syllabus ( Extended Play ) EE 3329 - Electronic Devices Syllabus EE 3329 Electronic Devices Syllabus ( Extended Play ) The University of Texas at El Paso The following concepts can be part of the syllabus for the Electronic Devices

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

Lecture 1 Nanoscale MOSFETs. Course Structure Basic Concepts (1-38)

Lecture 1 Nanoscale MOSFETs. Course Structure Basic Concepts (1-38) Lecture 1 Nanoscale MOSFETs Course Structure Basic Concepts (1-38) 1 Course Layout 7.5 ECTS 7 Lectures 7 Excercises Written exam (t.b.d) Textbook: Nanoscale Transistors: Device Physics, Modeling and Simulation

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics t ti Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE105 Fall 2007

More information

Semiconductor Devices, Fall Gunnar Malm, Associate Professor Integrated Devices and Circuits, Kista Campus

Semiconductor Devices, Fall Gunnar Malm, Associate Professor Integrated Devices and Circuits, Kista Campus Semiconductor Devices, Fall 2014 Gunnar Malm, Associate Professor Integrated Devices and Circuits, Kista Campus gunta@kth.se, 08-790 4332 Semiconductor procesing at KTH Electrum Laboratory Stepper Lithography

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Technology Development for InGaAs/InP-channel MOSFETs

Technology Development for InGaAs/InP-channel MOSFETs MRS Spring Symposium, Tutorial: Advanced CMOS Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

Introduction to Power Semiconductor Devices

Introduction to Power Semiconductor Devices ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings

More information

ECE335F: Electronic Devices Syllabus. Lecture*

ECE335F: Electronic Devices Syllabus. Lecture* Lecture 1 - Introduction: Course Overview 1 - Introduction: Course Overview 2 1 Crystal Structure of Solids 2 1 Crystal Structure of Solids 1.1 Semiconductor materials 1.1 Semiconductor materials 1.2 Types

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

ECE-305: Spring 2018 Final Exam Review

ECE-305: Spring 2018 Final Exam Review C-305: Spring 2018 Final xam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapters 10 and 11 (pp. 371-385, 389-403) Professor Peter Bermel lectrical and Computer ngineering Purdue University,

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

Blaze/Blaze 3D. Device Simulator for Advanced Materials

Blaze/Blaze 3D. Device Simulator for Advanced Materials Blaze/Blaze 3D Device Simulator for Advanced Materials Contents Introduction: What is Blaze? Purpose: Why use Blaze? Features Application examples Conclusions - 2 - Introduction Blaze/Blaze 3D simulates

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

Lecture 8: Ballistic FET I-V

Lecture 8: Ballistic FET I-V Lecture 8: Ballistic FET I-V 1 Lecture 1: Ballistic FETs Jena: 61-70 Diffusive Field Effect Transistor Source Gate L g >> l Drain Source V GS Gate Drain I D Mean free path much shorter than channel length

More information

The discussion about p-n junctions in the semiconductor device is fundamental both

The discussion about p-n junctions in the semiconductor device is fundamental both CHAPTER II MATERIALS JUNCTIONS 2.1 p-n Junctions 2.1.1 Homojunction The discussion about p-n junctions in the semiconductor device is fundamental both in modern electronic applications and in understanding

More information

ECE 305: Fall MOSFET Energy Bands

ECE 305: Fall MOSFET Energy Bands ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two - 6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large

More information

Switching circuits: basics and switching speed

Switching circuits: basics and switching speed ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Semiconductor Integrated Process Design (MS 635)

Semiconductor Integrated Process Design (MS 635) Semiconductor Integrated Process Design (MS 635) Instructor: Prof. Keon Jae Lee - Office: 응용공학동 #4306, Tel: #3343 - Email: keonlee@kaist.ac.kr Lecture: (Tu, Th), 1:00-2:15 #2425 Office hour: Tues & Thur

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

JFETs - MESFETs - MODFETs

JFETs - MESFETs - MODFETs Technische Universität raz Institute of Solid State Physics JFETs - MESFETs - MOFETs JFET n n-channel JFET S n-channel JFET x n 2 ( Vbi V) en S p-channel JFET 2 Pinch-off at h = x en n h Vp 2 V p = pinch-off

More information

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009 Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Schottky diodes. JFETs - MESFETs - MODFETs

Schottky diodes. JFETs - MESFETs - MODFETs Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs - MESFETs - MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different

More information

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 17-1 Lecture 17 - The Bipolar Junction Transistor (I) Contents: Forward Active Regime April 10, 2003 1. BJT: structure and basic operation

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December 2016

CARLETON UNIVERSITY. FINAL EXAMINATION December 2016 CARLETON UNIVERSITY FINAL EXAMINATION December 2016 DURATION: 3 HOURS Department Name & Course Number: Electronics 4705 Course Instructor(s): Tom Smy AUTHORIZED MEMORANDA CALCULATOR (Not Programmable)

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Quantum Device Simulation. Overview Of Atlas Quantum Features

Quantum Device Simulation. Overview Of Atlas Quantum Features Quantum Device Simulation Introduction Motivation for using Quantum models Overview of Atlas Quantum features Discussion of Quantum models - 2 - Motivation Reduction in device size -> coherence length

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

ECE236A: Semiconductor Heterostructure Materials Fall 2017, Sept. 25 Dec. 16 class website:

ECE236A: Semiconductor Heterostructure Materials Fall 2017, Sept. 25 Dec. 16 class website: ECE236A: Semiconductor Heterostructure Materials Fall 2017, Sept. 25 Dec. 16 class website: http://iebl.ucsd.edu/ece236a Instructor: Shadi A. Dayeh Lectures: Tuesday, Thursday, 3:30-4:50 pm Center Hall,

More information

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit.

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit. 14ECEI302/EC 212 1. Answer all questions (1X12=12 Marks) a What are the applications of linked list? b Compare singly linked list and doubly linked list. c Define ADT. d What are the basic operations of

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

Analytical Evaluation of Energy and Electron Concentrations in Quantum Wells of the High Electron Mobility Transistors.

Analytical Evaluation of Energy and Electron Concentrations in Quantum Wells of the High Electron Mobility Transistors. Analytical Evaluation of Energy Electron Concentrations in Quantum Wells of the High Electron Mobility Transistors Salih SAYGI Department of Physics, Faculty of Arts Sciences, Gaziosmanpasa University,

More information