Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology

Size: px
Start display at page:

Download "Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology"

Transcription

1 Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology Takao Kihara, Shigesato Matsuda, Tsutomu Yoshimura Osaka Institute of Technology, Japan June 27, 2016

2 2 / 16 Outline Background Analysis of Differential LNAs with On-Chip Transformer Differential Common-Source (CS) LNA Differential Common-Gate (CG) LNA Design Considerations and Comparison Simulation Schematic Simulated Results Comparison Summary

3 Wearable devices with Bluetooth Low Energy (BLE) have required small-size RF modules Background Single-ended input/ output RF transceivers reduce PCB area RF2541 BLE Module (NiceRF Wireless Technology) Challenges: On-chip balun LNAs often employ differential topologies On-chip transformer / OUT GND Chip Transformer (balun) provides single-to-differential conversion greatly influences the LNA peformances: input impedance, gain, and noise figure Differential LNA 3 / 16

4 4 / 16 Objectives Analyze influences of transformer on Inductively-degenerated CS LNA (widely used) Cross-coupled CG LNA Analytical expressions Input impedance Current gain Noise figure Design considerations Required Q and L of inductors in transformer Comparison of topologies

5 5 / 16 Input Impedance of Transformer Loaded with LNA i 1 i 2 1 : n sl 1 sl 2 L 1 L 2 Z in,dif,lna smi 2 smi 1 Zin,dif,lna Z in,trans R 1 R 2 Input impedance of differential LNA without transformer, Z in,di f,lna Mutual inductance, M (= nkl 1 ), and coupling factor, k Parasitic resistances (R i = ω 0 L i /Q i, i = 1, 2) included ( jωnkl 1 ) 2 Z in,trans = R 1 + jωl 1 R 2 + jωn 2 L 1 + Z in,di f,lna

6 Input Impedance of Differential CS LNA Additional capacitors (C 1, C 2 ) resonate with inductors (L 1, L 2 and L s ) at operating frequency, ω 0 C 1 OUT_P C L L L L L V DD OUT_N C L Z in,cs = R 1 + ω2 0 n2 k 2 L1 2 R 2 + 2ω T L, s g m ω T = C gs + C 2 C 2 L 1 Z in,cs L 2 L s L s C 2 2ω T L s: Real part of input impedance of differential CS LNA without transformer, conventionally set to 50 Ω. For a larger L 1, we have to increase 2ω T L s accordingly to achieve input impedance matching. 6 / 16

7 7 / 16 Current Gain and NF of Differential CS LNA i 1 =v s / 2R s smi 1 / (R 2 +2w T 'L s ) sl 1 sl 2 v gs1 g m1 v gs1 smi 2 smi 1 s (C gs1 + C 2 ) 2sL s R 1 R 2 v gs2 g m2 v gs2 Current gain and noise factor: α cs = g m v gs1 v s /2R s = g m sm s(c gs + C 2 )(R 2 + 2ω T L s) = ω T nkl 1 R 2 + 2ω T L, s F cs = 1 + F R1 + F R2 + F RLs + γ 2R s g m R s + 2α 2 cs Current gain (α cs ) influences noise figure. α 2 csr eq,ll

8 8 / 16 Input Impedance of Differential CG LNA Additional capacitors (C 2 ) resonate with inductors (L 1 and L 2 ) at ω 0 OUT_P L L L L V DD OUT_N Equivalent resistance of LC tank (L 2, C 2 and C gs ): R eq,l2 = Q 2 2 R 2 Input admittance of CG LNA without transformer: g m + 1/R eq,l2 C L L 1 L 2 Z in,cg C 2 C C C 2 C L Z in,cg R 1 + k 2 n 2 ( g m + 1/R eq,l2 ), where k 2 1.

9 Current Gain and NF of Differential CG LNA i 1 =v s / 2R s sl 1 sl 2 g m1 v gs smi 2 smi 1 v gs 2s(C gs + C 2 ) R 1 R 2 g m2 v gs Current gain and noise factor: α cg = g m v gs1 sm v s /2R s = R 2 +sl 2 g m 1 R 2 +sl 2 + g m + 2s(C gs + C 2 ) F cg = 1 + F R1 + F R2 + γ 2α 2 cg g m R s + 2R s α 2 cgr eq,ll. kg m n ( g m + 1/R eq,l2 ), Dependence of α on transformer design parameters (L and Q) provides us useful information 9 / 16

10 10 / 16 Calculated Current Gain (α cs and α cg ) vs. L 1 and CS LNA α cs = ω T nkl 1 R 2 + 2ω T L s CG LNA kg m α cg = n ( ) g m + 1/R eq,l2 α cs, α cg = =6 0.7 = α cs α cg =8 =6 = Increasing Q i results in higher current gains f 0 =2.45 GHz, g m =17 ms, γ=1 n=0.92, k=0.90, Q Ls =6 C c =10 pf, R eq,ll =380 Ω L 1 [nh] α cs has the maximum value (around L 1 = 2.6 nh), while α cg increases as L 1 increases CG LNA obtains a higher current gain for L 1 > 3.5 nh

11 11 / 16 Calculated NF vs. L 1 and F cs =1 + F R1 + F R2 + F RLs + γ + 2α 2 cs 2R s α 2 csr eq,ll, F cg = 1 + F R1 + F R2 + γ g m R s + 2α 2 cg 2R s α 2 cgr eq,ll. g m R s NF [db] =4 Q 5 1 =6 Q =8 Increasing Q i results in lower NFs Transformer with Q > 6 provides NF < 5 db f 0 =2.45 GHz, g m =17 ms, γ=1 n=0.92, k=0.90, Q Ls =6 C c =10 pf, R eq,ll =380 Ω NF cs NF cg =4 =6 = L 1 [nh] CG LNA has a lower NF than CS LNA for L 1 > 3.5 nh

12 12 / 16 Schematics (Half) of Differential CS and CG LNAs OUT_P 1.0 pf 0.8 pf 0.7 V 4.1 nh 72 mm 60 nm 48 mm 120 nm 4.1 nh 1.9 ma 72 mm 60 nm 48 mm 120 nm 0.7 V OUT_P 1.0 pf 510 mv 0.7 pf 1.8 nh 0.6 pf 10 pf 510 mv 1.9 ma Renesas Silicon-on-Thin-Buried Oxide (SOTB) 65-nm CMOS Frequency=2.45 GHz; Current consumption=3.8 ma@0.70 V

13 13 / 16 Layout of Transformer Structure Two inter-winding symmetric octagonal inductors Stacked with top three metal layers (1.7 µm in thickness) Outer diameter (d out ): 300 µm Metal width: 10 µm To LNA Characteristics@2.45 GHz (Simulated with Momentum) L 1 = 3.6 nh, L 2 = 3.1 nh = 5.7, Q 2 = 5.4 k = 0.91 GND

14 14 / 16 Simulated S 21 and NF of CS and CG LNAs 18 S 21 [db] NF [db] CS LNA CG LNA 10 CS LNA CG LNA Frequency [GHz] Frequency [GHz] CG LNA achieved a slightly higher gain and a lower NF ( S 21 = 20.9 db, NF = 4.55 db) than CS LNA ( S 21 = 20.4 db, NF = 5.18 db)

15 15 / 16 Comparison between Simulations and Calculations Transformer Simulated Calculated LNA d out L 1 S 11 S 21 NF S 21 NF [µm] [nh] [-] [db] [db] [db] [db] [db] Spec < 10 >20 <5 >20 <5 CS CG f 0 = 2.45 GHz, V DD = 0.7 V, I DD = 3.8 ma. f 0 = 2.45 GHz, g m = 17 ms, γ = 1, Q Ls = Q LL = 6, C c = 10 pf. Two transformers (d out =300, 360 µm) are used Calculated NFs of CS LNAs are slightly lower than simulations, due to parasitic capacitances of transformer Calculations of CG LNAs agree with simulations, because these capacitances can be considered as C gs

16 16 / 16 Summary Derived analytical expressions for differential CS and CG LNAs with on-chip transformers: Calculations agree well with simulations, except for NF of CS LNA CG LNA (with L >3.5 nh) achieves a higher gain and lower NF than CS LNA Presented design considerations: Minimum requirements for Q and L of transformer: Q >6 for NF >5 db and L >3.5 nh for CG LNA Significantly reduce the design efforts to differential LNAs with on-chip transformers.

Advantages of Using CMOS

Advantages of Using CMOS Advantages of Using CMOS Compact (shared diffusion regions) Very low static power dissipation High noise margin (nearly ideal inverter voltage transfer characteristic) Very well modeled and characterized

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

Characteristics of Passive IC Devices

Characteristics of Passive IC Devices 008/Oct 8 esistors Characteristics of Passive IC Devices Poly esistance Diffusion esistance Well esistance Parasitic esistance Capacitors Poly Capacitors MOS Capacitors MIM Capacitors Parasitic Capacitors

More information

Low Noise Amplifiers. Prepared by: Heng Zhang. ECEN 665 (ESS) : RF Communication Circuits and Systems

Low Noise Amplifiers. Prepared by: Heng Zhang. ECEN 665 (ESS) : RF Communication Circuits and Systems ECEN 665 (ESS) : RF Communication Circuits and Systems Low Noise Amplifiers Prepared by: Heng Zhang Part of the material here provided is based on Dr. Chunyu Xin s and Dr. Xiaohua Fan s dissertation 1

More information

SPIRAL and RF-PASS Three Dimensional Design and Analysis Tools for RF Integrated Circuits

SPIRAL and RF-PASS Three Dimensional Design and Analysis Tools for RF Integrated Circuits SPIRAL and RF-PASS Three Dimensional Design and Analysis Tools for RF Integrated Circuits By Ersed Akcasu, Haris Basit, Kerem Akcasu, Tufan Colak and Ibrahim Akcay OEA International, Inc. 155 East Main

More information

Characteristic of Capacitors

Characteristic of Capacitors 3.5. The Effect of Non ideal Capacitors Characteristic of Capacitors 12 0 (db) 10 20 30 capacitor 0.001µF (1000pF) Chip monolithic 40 two-terminal ceramic capacitor 0.001µF (1000pF) 2.0 x 1.25 x 0.6 mm

More information

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004 Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation Agilent EEsof RFIC Seminar Spring Overview Spiral Inductor Models Availability & Limitations Momentum

More information

EMC Considerations for DC Power Design

EMC Considerations for DC Power Design EMC Considerations for DC Power Design Tzong-Lin Wu, Ph.D. Department of Electrical Engineering National Sun Yat-sen University Power Bus Noise below 5MHz 1 Power Bus Noise below 5MHz (Solution) Add Bulk

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

A Multi-Line De-Embedding Technique for mm-wave CMOS Circuits

A Multi-Line De-Embedding Technique for mm-wave CMOS Circuits A Multi-Line De-Embedding Technique for mm-wave CMOS Circuits Naoki Takayama, Kota Matsushita, Shogo Ito, Ning Li, Keigo Bunsen Kenichi Okada, and Akira Tokyo Institute of Technology, Japan Outline 2 Background

More information

Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances for CMOS Voltage Controlled Oscillators

Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances for CMOS Voltage Controlled Oscillators IEICE TRANS. EECTRON., VO.E93 C, NO.6 JUNE 200 777 PAPER Special Section on Analog Circuits and Related SoC Integration Technologies Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances

More information

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components Michael H. Perrott February 11, 2004 Copyright 2004 by Michael H.

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Distributed SPICE Circuit Model for Ceramic Capacitors

Distributed SPICE Circuit Model for Ceramic Capacitors Published in Conference Record, Electrical Components Technology Conference (ECTC), Lake Buena Vista, Florida, pp. 53-58, May 9, 00. Distributed SPICE Circuit Model for Ceramic Capacitors Larry D Smith,

More information

An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range Loai G. Salem and Patrick P. Mercier University of California, San Diego

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

Electrical and Thermal Packaging Challenges for GaN Devices. Paul L. Brohlin Texas Instruments Inc. October 3, 2016

Electrical and Thermal Packaging Challenges for GaN Devices. Paul L. Brohlin Texas Instruments Inc. October 3, 2016 Electrical and Thermal Packaging Challenges for GaN Devices Paul L. Brohlin Texas Instruments Inc. October 3, 2016 1 Outline Why GaN? Hard-Switching Losses Parasitic Inductance Effects on Switching Thermal

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLF245 VHF power MOS transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLF245 VHF power MOS transistor DISCRETE SEMICONDUCTORS DATA SHEET September 1992 FEATURES High power gain Low noise figure Easy power control Good thermal stability Withstands full load mismatch. DESCRIPTION Silicon N-channel enhancement

More information

Case Study: Parallel Coupled- Line Combline Filter

Case Study: Parallel Coupled- Line Combline Filter MICROWAVE AND RF DESIGN MICROWAVE AND RF DESIGN Case Study: Parallel Coupled- Line Combline Filter Presented by Michael Steer Reading: 6. 6.4 Index: CS_PCL_Filter Based on material in Microwave and RF

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen Lecture 040 Integrated Circuit Technology - II (5/11/03) Page 040-1 LECTURE 040 INTEGRATED CIRCUIT TECHNOLOGY - II (Reference [7,8]) Objective The objective of this presentation is: 1.) Illustrate and

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer 3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer Makoto Takamiya 1, Koichi Ishida 1, Koichi Takemura 2,3, and Takayasu Sakurai 1 1 University of Tokyo, Japan 2 NEC Corporation,

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLF246 VHF power MOS transistor Oct 21. Product specification Supersedes data of September 1992

DISCRETE SEMICONDUCTORS DATA SHEET. BLF246 VHF power MOS transistor Oct 21. Product specification Supersedes data of September 1992 DISCRETE SEMICONDUCTORS DATA SHEET Supersedes data of September 1992 1996 Oct 21 FEATURES High power gain Low noise figure Easy power control Good thermal stability Withstands full load mismatch. PINNING

More information

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits M. Baraani Dastjerdi and H. Krishnaswamy CoSMIC Lab, Columbia University, New

More information

Circuit Topologies & Analysis Techniques in HF ICs

Circuit Topologies & Analysis Techniques in HF ICs Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential

More information

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L5: Fabrication and Layout -2 (12.8.2013) B. Mazhari Dept. of EE, IIT Kanpur 44 Passive Components: Resistor Besides MOS transistors, sometimes one requires to implement passive

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters Michael W. Baker, PhD Maxim Integrated Power SoC Northeastern University, Boston MA. October 7, 2014 Mobile Device Trends Power Management

More information

ECE 202 Fall 2013 Final Exam

ECE 202 Fall 2013 Final Exam ECE 202 Fall 2013 Final Exam December 12, 2013 Circle your division: Division 0101: Furgason (8:30 am) Division 0201: Bermel (9:30 am) Name (Last, First) Purdue ID # There are 18 multiple choice problems

More information

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers 6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers Michael Perrott Massachusetts Institute of Technology March 8, 2005 Copyright 2005 by Michael H. Perrott Notation for Mean,

More information

Graser User Conference Only

Graser User Conference Only PCB Power Delivery Design from DC to Mid-Frequency Foxconn Abby Chou Company Introduction February 1974 Tucheng District 1.23 million Server Storage Mobile Phone Pad TV Voltage Drop and Thermal Co-Simulation

More information

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Wire July 30, 2002 1 The Wire transmitters receivers schematics physical 2 Interconnect Impact on

More information

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn POWER SUPPY INDUED JITTER MODEING OF AN ON- HIP OSIATOR Shahriar Rokhsaz, Jinghui u, Brian Brunn Rockethips Inc. (A Xilinx, Inc. Division) ABSTRAT This paper concentrates on developing a closed-form small

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 18.09.2014 L Type Matching Network Examples Nodal Quality Factor T- and Pi- Matching Networks Microstrip Matching Networks Series- and Shunt-stub Matching L Type Matching Network (contd.)

More information

On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject

On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject Aleksandar Tasic QCT - Analog/RF Group Qualcomm Incorporated, San Diego A. Tasic 9 1 Outline Spectral Analysis

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

Power Distribution Network Design for High-Speed Printed Circuit Boards

Power Distribution Network Design for High-Speed Printed Circuit Boards Power Distribution Network Design for High-Speed Printed Circuit Boards Jun Fan NCR Corporation 1 Outline Overview of PDN design in multi-layer PCBs Interconnect Inductance Individual Capacitor Values

More information

Lowpass L Matching Network Designer

Lowpass L Matching Network Designer Lowpass L Matching Network Designer V S L V L I S j*x S C j*x L Table of Contents I. General Impedance Matching II. Impedance Transformation for Power Amplifiers III. Inputs IV. Calculations V. Outputs

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Special Aspects on Non-Magnetic Current Sensing Techniques

Special Aspects on Non-Magnetic Current Sensing Techniques pecial eminar Aspects ensors on in Non-Magnetic Power Electronics Current ensing Erlangen, 14-15. March 2007 pecial Aspects on Non-Magnetic Current ensing Techniques Dr. Martin Maerz Department of Power

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16] Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

More information

Class E Design Formulas V DD

Class E Design Formulas V DD Class E Design Formulas V DD RFC C L+X/ω V s (θ) I s (θ) Cd R useful functions and identities Units Constants Table of Contents I. Introduction II. Process Parameters III. Inputs IV. Standard Class E Design

More information

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF Annexure-I Impedance matching and Smith chart The output impedance of the RF generator is 50 ohms. The impedance matching network acts as a buffer in matching the impedance of the plasma reactor to that

More information

ES51919/ES51920 LCR meter chipset

ES51919/ES51920 LCR meter chipset ES51919/ES51920 LCR meter chipset Features 19,999/1,999 counts dual LCD display Application Handheld LCR bridge meter Current consumption: Typ. 25mA @ 100kHz QFP-100L package for ES51919 SSOP-48L package

More information

Design Equations for Spiral and Scalable Cross Inductors on 0.35 μm CMOS Technology

Design Equations for Spiral and Scalable Cross Inductors on 0.35 μm CMOS Technology DOI: http://dx.doi.org/10.1590/2179-10742018v17i31215 403 Design Equations for Spiral and Scalable Cross Inductors on 0.35 μm CMOS Technology José Fontebasso Neto 1, Luiz Carlos Moreira 1, Fatima Salete

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

Frequency Bands. ω the numeric value of G ( ω ) depends on the frequency ω of the basis

Frequency Bands. ω the numeric value of G ( ω ) depends on the frequency ω of the basis 1/28/2011 Frequency Bands lecture 1/9 Frequency Bands The Eigen value G ( ω ) of a linear operator is of course dependent on frequency ω the numeric value of G ( ω ) depends on the frequency ω of the basis

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Spectral Analysis of Noise in Switching LC-Oscillators

Spectral Analysis of Noise in Switching LC-Oscillators Spectral Analysis of Noise in Switching LC-Oscillators 71 Sub-Outline Duty Cycle of g m -cell Small-Signal Gain Oscillation Condition LC-Tank Noise g m -cell Noise Tail-Current Source Noise (Phase) Noise

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

PT W/CH Stereo Filter-free Class-D Audio Power Amplifier

PT W/CH Stereo Filter-free Class-D Audio Power Amplifier GENERAL DESCRIPTION The is a dual.0w high efficiency filterless class D audio power amplifier in a 4mm 4mm QFN-6 and SMD-6 or SOP6 package that requires only five external components. The uses Class D

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1 19-1948; Rev 1; 3/01 Miniature Electronically Trimmable Capacitor General Description The is a fine-line (geometry) electronically trimmable capacitor (FLECAP) programmable through a simple digital interface.

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLF543 UHF power MOS transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLF543 UHF power MOS transistor DISCRETE SEMICONDUCTORS DATA SHEET October 1992 FEATURES High power gain Easy power control Good thermal stability Gold metallization ensures excellent reliability Designed for broadband operation. DESCRIPTION

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI Contents Delay estimation Simple RC model Penfield-Rubenstein Model Logical effort Delay

More information

PCB Project: Measuring Package Bond-Out Inductance via Ground Bounce

PCB Project: Measuring Package Bond-Out Inductance via Ground Bounce PCB Project: Measuring Package Bond-Out Inductance via Ground Bounce Kylan Roberson July 9, 014 Abstract In this experiment I looked into a way of measuring the ground bounce generated by capacitively

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices EECS240 Spring 2008 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS echnology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 oday s Lecture

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLF145 HF power MOS transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLF145 HF power MOS transistor DISCRETE SEMICONDUCTORS DATA SHEET September 1992 FEATURES High power gain Low noise figure Good thermal stability Withstands full load mismatch. DESCRIPTION Silicon N-channel enhancement mode vertical

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLU99 BLU99/SL UHF power transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLU99 BLU99/SL UHF power transistor DISCRETE SEMICONDUCTORS DATA SHEET /SL March 1993 /SL DESCRIPTION N-P-N silicon planar epitaxial transistor primarily intended for use in mobile radio transmitters in the u.h.f. band. The transistor is

More information

ECE 255, Frequency Response

ECE 255, Frequency Response ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

More information

Which way for Wireless Power: High Q or High k? Bruce Long, John Miller, Andrew Daga, and Peter Schrafel Momentum Dynamics

Which way for Wireless Power: High Q or High k? Bruce Long, John Miller, Andrew Daga, and Peter Schrafel Momentum Dynamics Which way for Wireless Power: High Q or High k? Bruce Long, John Miller, Andrew Daga, and Peter Schrafel Momentum Dynamics Problem Statement The present technical paradigm for resonant induction wireless

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

How Resonant Structures Affect Power Distribution Networks and Create Emissions.

How Resonant Structures Affect Power Distribution Networks and Create Emissions. How Resonant Structures Affect Power Distribution Networks and Create Emissions. Presented by Joanna McLellan January 17, 2019 JoannaEMC@iCloud.com 248-765-3599 Lots of people have the paradigm that adding

More information

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

Layout-Optimization of Power-Devices. Frederik Vanaverbeke, J. Das, H. Oprins, J. Derluyn, M. Germain, W. De Raedt

Layout-Optimization of Power-Devices. Frederik Vanaverbeke, J. Das, H. Oprins, J. Derluyn, M. Germain, W. De Raedt Layout-Optimization of Power-Devices Frederik Vanaverbeke, J. Das, H. Oprins, J. Derluyn, M. Germain, W. De Raedt Outline 1. Problem + Nomenclature 2. Unit gatewidth 3. Thermal 4. Number of unit cells

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering High-Frequency Model BJT & MOS B or G r x C f C or D r

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLW33 UHF linear power transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLW33 UHF linear power transistor DISCRETE SEMICONDUCTORS DATA SHEET August 1986 DESCRIPTION N-P-N silicon planar epitaxial transistor primarily intended for use in linear u.h.f. amplifiers for television transmitters and transposers.

More information

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST Introduction The Metal-Insulator-Metal capacitor is a key passive component in Radio Frequency (RF) and analog

More information

A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz. Sept Hui Wang and Patrick P.

A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz. Sept Hui Wang and Patrick P. A 51pW Reference-Free apacitive-discharging Oscillator Architecture Operating at 2.8Hz Sept. 28 2015 Hui Wang and Patrick P. Mercier Wireless Sensing Platform Long-Term Health Monitoring - Blood glucose

More information

R m. Radio-frequency capacitance spectroscopy of metallic nanoparticles: Supplementary Material

R m. Radio-frequency capacitance spectroscopy of metallic nanoparticles: Supplementary Material Radio-frequency capacitance spectroscopy of metallic nanoparticles: Supplementary Material J.C. Frake, 1 S. Kano,,3 C. Ciccarelli, 1 J. riths, 1 M. Sakamoto, 3,4,5 T. Teranishi, 3,4 Y. Majima,,3,6 C..

More information

Interconnect s Role in Deep Submicron. Second class to first class

Interconnect s Role in Deep Submicron. Second class to first class Interconnect s Role in Deep Submicron Dennis Sylvester EE 219 November 3, 1998 Second class to first class Interconnect effects are no longer secondary # of wires # of devices More metal levels RC delay

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Transmission Lines. Author: Michael Leddige

Transmission Lines. Author: Michael Leddige Transmission Lines Author: Michael Leddige 1 Contents PCB Transmission line structures Equivalent Circuits and Key Parameters Lossless Transmission Line Analysis Driving Reflections Systems Reactive Elements

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

Exact Analysis of a Common-Source MOSFET Amplifier

Exact Analysis of a Common-Source MOSFET Amplifier Exact Analysis of a Common-Source MOSFET Amplifier Consider the common-source MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel

More information

PURPOSE: See suggested breadboard configuration on following page!

PURPOSE: See suggested breadboard configuration on following page! ECE4902 Lab 1 C2011 PURPOSE: Determining Capacitance with Risetime Measurement Reverse Biased Diode Junction Capacitance MOSFET Gate Capacitance Simulation: SPICE Parameter Extraction, Transient Analysis

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

6.1 Introduction

6.1 Introduction 6. Introduction A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then.

More information

UPC. 5. Properties and modeling of onchip Power Distribution Networks. Decoupling capacitance

UPC. 5. Properties and modeling of onchip Power Distribution Networks. Decoupling capacitance 5. Properties and modeling of onchip Power Distribution Networks Decoupling capacitance Electrical properties of on-chip PDN: capacitance Capacitance associated with PDN: Gates Interconnects Well (in standard

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLF521 UHF power MOS transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLF521 UHF power MOS transistor DISCRETE SEMICONDUCTORS DATA SHEET November 1992 FEATURES PIN CONFIGURATION High power gain Easy power control ook, halfpage 1 Gold metallization Good thermal stability Withstands full load mismatch Designed

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLW96 HF/VHF power transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLW96 HF/VHF power transistor DISCRETE SEMICONDUCTORS DATA SHEET August 1986 DESCRIPTION N-P-N silicon planar epitaxial transistor intended for use in class-a, AB and B operated high power industrial and military transmitting equipment

More information