On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject

Size: px
Start display at page:

Download "On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject"

Transcription

1 On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject Aleksandar Tasic QCT - Analog/RF Group Qualcomm Incorporated, San Diego A. Tasic 9 1

2 Outline Spectral Analysis of Noise in LC-Oscillators LC-tank, g m -cell, bias current source noise (Phase-) Noise factor Bipolar vs. CMOS LC-Oscillators LC-Oscillators Noise Reduction Methods Mixer Noise Factor from VCO Noise Factor Oscillator Phase Noise in Receiver s SNR LNA and Mixer Noise Factors in a Receiver BBFilter Noise Transfer vs. LO/Mix Duty A. Tasic 9

3 Phase Noise Model of Bipolar and CMOS LC-Oscillators A. Tasic 9 3

4 Outline Oscillation Condition LC-Tank Noise Folding g m -Cell Noise Folding Bias-Current Source Noise Folding Phase-Noise Model of Bipolar LC-Oscillators Phase-Noise Model of CMOS LC-Oscillators Bipolar vs. CMOS LC-Oscillators A. Tasic 9 4

5 LC-Oscillator Noise Sources i GTK L/ L/ C C R TK / R TK / LC-tank noise i N ( GTK ) KTGTK i C1 v B1 v B ~ ~ Q 1 Q i B1 i B i C transconductor noise i N ( IC ) qic KTgm / v N ( rb ) KTrB I TAIL Q CS i BCS bias current source noise i ( I ) KTg (1 r g ) N BCS m, CS B, CS m, CS A. Tasic 9 5

6 Oscillator and Phase-Noise Model v N + g m -cell i NO, i i PM * NO(, f ) i NO(, f ) i AM v NO, LC- tank i S phase-modulating noise component (double-sided) 1 * ipm ( f ) in, O( f ) in, O( f ) 1 * ipm ( f ) in, O( f ) in, O( f ) phase-related noise power (single-sided) 1 v i f i f Z f PM, TOT PM, TOT PM ( ) PM ( ) ( ) A. Tasic 9 4 CTOT i 6

7 g m -Cell Transfer Function small-signal gain in the presence of a large signal i OUT g IN = d i OUT d v S v S t d / f - g = g m / 1 / f Fourier domain (magnitude) complex harmonic components g -4 g - g g g 4 g i ji t g g() t e dt i 1 / f gd T T T /4 /4 sin( i d) i d d 1 k -4f -3f -f -f A. Tasic 9 f f 3f 4f 7

8 Oscillation Condition harmonics: g m -cell and oscillation signal g g - v S / v S / g -f -f f f convolution: g v S / g v S / g - v S / g v S / -f oscillation signal: -f v ( f ) v ( f ) v ( f ) v ( f ) v g g g g R ( g g ) v R S S S S S TK S TK oscillation condition: g g G TK A. Tasic 9 f f small-signal loop gain: k=r TK g m / duty cycle: d=1/(k) 8

9 g - LC-Tank Noise Folding convolution: g and g harmonics and LC-tank noise v N ( f ) v N ( f ) g v N ( f ) v N ( f ) g -f -f f f g g v vn ( f ) v N ( f ) g vn ( f ) g N ( f ) -f -f f f g - g g v N ( f ) v N ( f ) v N ( f ) v N ( f ) -f -f f f g - vn ( f ) g - v g vn ( f ) g vn ( f ) N ( f ) -f -f A. Tasic 9 f f 9

10 LC-Tank Noise Folding LC-tank noise contribution: g g v ( f ) v ( f ) vn ( f ) g v N g N N ( f ) -f -f f f g - v ( f ) v ( f ) v ( f ) vn ( f ) N g - g N g N -f -f f f i ( f ) g v ( f ) g v ( f ) NO, N N i ( f ) g v ( f ) g v ( f ) NO, N N i ( f ) g v ( f ) g v ( f ) NO, N N i ( f ) g v ( f ) g v ( f ) NO, N N A. Tasic 9 1

11 LC-Tank Noise Contribution phase-modulating noise component: 1 ipm in, O( f ) in, O( f ) in, O( f ) in, O( f ) i ( g g ) v ( f ) ( g g ) v ( f ) PM N N phase-related noise power (k>>1, g=g =g ): TK i ( R ) ( g g ) v ( R ) PM LC-tank noise transfer function: ( TK ) ( ) TK g R g g G LC-tank noise factor: N TK PM TK g g v R N TK GTK v R N TK i ( R ) ( ) ( ) ( ) 4KTGTK FR ( TK ) 1 4KTG 4KTG 4KTG 4KTG TK TK TK TK A. Tasic 9 11

12 g -4 g m -Cell Noise Folding convolution: g and g harmonics and f g m -cell noise g - g g g 4 vn ( 3 f ) vn ( 3 f ) vn ( f ) vn ( f ) vn ( f ) vn ( f ) vn (3 f ) vn (3 f ) -4f -3f -f -f f f 3f 4f gv ( v ( g vn ( f ) v N f ) N f ) g g N ( f ) -f -f f f g - g g - vn ( f ) vn ( f ) g v ( vn ( f ) N f ) -f -f g m -cell noise around odd multiples of the oscillation frequency is folded to the LC-tank noise around the oscillation frequency A. Tasic 9 f f 1

13 g m -Cell Noise Contribution phase-modulating noise component: i ( g g ) v ( f ) ( g g ) v ( f ) PM N N +( g g ) v (3 f ) ( g g ) v (3 f )... 4 N 4 N +( g g ) v ((i 1) f ) ( g g ) v ((i 1) f ) i i N i i N phase-related noise power (k>>1, g=g =g = ): m IN 4 i i m IN i ( g ) ( g g ) ( g g )... ( g g ) v ( g ) PM N number of g i harmonic components: f 1 1 d f d number of (g i- +g i ) folding pairs: 1 k k d t -g=g m / d/f f /d A. Tasic 7 13 f

14 g m -Cell Noise Contributions phase-related noise power: 1 gi i ( g ) ( ) ( ) ( ) ( ) PM m IN g i g i v g N m IN v g N m IN dg v g N m IN d d g m -cell noise transfer function: gm 1 g ( g ) dg d( ) ( kg k ) kg g m -cell noise factors: m IN TK TK i ( r ) 4 PM B kgtk KTrB B B TK 4KTGTK 4KTGTK F( r ) kr G kc i I PM C kgtk KT gm C TK m 4KTGTK 4KTGTK ( ) / 1 F( I ) kg / g A. Tasic 9 14

15 r B Noise Contribution Be Precise phase-related noise power (k>>1): B 4 i B i ( r ) g 4g 4 g... 4 g v ( r ) PM N Paseval s Theorem: T / 4 t 4 ( B) i ( ) (1 ) T 1 T / 3 i T g r g g g t dt g dt g d r B noise factor: i ( r ) PM B F( rb ) kc 4KTG 3 TK A. Tasic 7 15

16 Bias Current-Source Noise Transfer Function g m -cell large-signal V-to-I transfer function I OUT 1 I OUT VIN -1 1 / f 1/f c i 1 sin((i 1) / ) (i 1) / Fourier domain (magnitude) complex harmonic components c -1 c -3 c 3 c 1-4f -3f -f -f A. Tasic 9 f f 3f 4f 16

17 phase-related noise power: ipm, DIFF ( IBCS ) 1 ipm ( I BCS ) in ( I BCS ) 4 4 BCS noise transfer function: BCS noise factor: FI ( ) BCS BCS Noise Contribution BCS noise around even multiples of the oscillation frequency is folded to the LC-tank noise around the oscillation frequency 1 g ( I BCS ) 4 i ( I ) KTg (1 r g ) KT kg (1 kc) PM BCS m B m TK 4KTG 4KTG 4KTG TK TK TK 1 1 k(1 kc) k( kc) k F( IC) F( rb) A. Tasic 9 17

18 Phase-Noise Model of Bipolar Switching LC-Oscillators Noise factor: F F( R ) F( I ) F( r ) F( I ) TK C B BCS F 1 kc k( kc) 1 (1 k) kc( k) 3 3 Phase noise: L L L L L ( R ) ( I ) ( r ) ( I ) 4KTG F TK C B BCS TK (4 CTOT ) v (4 CTOT ) S v S 8 kv T L 1 1 (1 k) kc( k) 4KTGTK 3 (4 C ) TOT ( ) 8V T k A. Tasic 9 18

19 Phase Noise Model of Bipolar Switching LC-Oscillators 1 1 F 1 kc k( kc) 3 Constant phase-noise contributions LC-tank noise contribution ~ 1 g m -cell current shot noise contribution ~ ½ Small-signal loop-gain related contributions g m -cell base-resistance noise contribution ~.66ck phase-noise contribution of the bias current source is k-times larger then the noise contribution of the g m -cell ~ k(½+ck)! A. Tasic 9 19

20 Low/High-Performance VCO Designs high ss loop-gain, high quality LC-tank, BCS noise eliminated: e.g., k>>1(=1), c<<1(~.1) 1 1 kc L ~ ~ k k high ss loop-gain, high quality LC-tank, BCS noise present: e.g., k>>1(=1), c<<1(~.1) 1 1 k( kc) kc L ~ ~ k k 5 1 k low ss loop-gain, low quality LC-tank, BCS noise present: e.g., k~1(=), c~1(~.5) 7 3 (1 k) 6 5 L ~ ~1 k 4 A. Tasic 9

21 ingle/double-switch CMOS LC-VCOs i N ( GTK ) KTGTK i GTK i D3 V DD i ( I ) KT g N D, P P m, P Q 3 Q 4 i D4 L/ L/ C C i GTK R TK / R TK / L/ L/ C C R TK / R TK / i D1 Q 1 Q i D i N ( I D ) KT gm Q CS i BCS i D1 Q 1 Q i ( I ) KT g N D, N N m, N i D d N G g TK m i ( I ) KT g N BCS m, CS A. Tasic 9 Q CS i BCS d C 1 G TK g m

22 Phase Noise Model of CMOS LC-Oscillators Noise factor ( N = P, g m,n =g m,p ): F F( R ) F( I ) F( I ) SS TK D BCS F 1 g /(4 G ) SS m, CS TK F F( R ) F(4 I ) F( I ) DS TK D BCS F 1 g / G DS m, CS TK Phase noise: L L L L ( R ) ( I ) ( I ) 4KTG F TK D BCS TK (4 CTOT ) v (4 CTOT ) S L SS 4KTG TK (4 C ) 1 gm, CS /(4 GTK ) ( I R ) TAIL TK L DS 4KTG TK (4 C ) 1 gm, CS / G 4 ( I R ) TAIL TK TK A. Tasic 9

23 Phase Noise Model of CMOS LC-Oscillators F 1 g / G m, CS Constant phase-noise contributions LC-tank noise contribution ~ 1 g m -cell drain-current thermal noise contribution ~ Small-signal loop-gain related contributions (?) bias current source noise contribution ~ g m,cs /G TK (k ) TK A. Tasic 9 3

24 CMOS vs. Bipolar LC-Oscillators noise factors (for removed BCS noise): FBIP kc F CMOS 1 bipolar VCO better for the same power consumption (v s,bip =v s,cmos ) 3 5 kc 3 3 kr B R TK 8 e.g., k=1, R TK =8 e.g., k=1, R TK =8 r B A. Tasic 9 r B

25 CMOS vs. Bipolar LC-Oscillators power consumption figure of merit: L FOM 1log ( ) VCC ICC V CC =1.8V, v s,bip =.4V, v s,ss-cmos =1.V, (3I CC,BIP =I CC,SS-CMOS ) FOM FOM 4.8dB BIP SS CMOS V CC =1.8V, v s,bip =.4V, v s,ds-cmos =1.V, (1.5I CC,BIP =I CC,DS-CMOS ) FOM FOM 7.8dB BIP DS CMOS A. Tasic 9 5

26 Phase-Noise Model Conclusions Parametric Phase-Noise Model electrical circuit parameters (ss loop gain) worst-case phase noise (bandwidth unlimited) Bipolar vs. CMOS LC-Oscillators bipolar ss loop-gain related contributions v S, BIP ~k (<<V CC ), v S,CMOS ~V CC bipolar capacitive tapping for larger v S, BIP, but also larger k-related noise contributions and power consumption A. Tasic 9 6

27 Verification of the Phase-Noise Model A. Tasic 7 7

28 VCO Noise Contributions f ~5.74GHz, R TK ~34 i GTK, n~1.65, c~.5, V CC =.V C V L V CC V TUNE C V LC-tank noise ~ 1 i C1 v B1 ~ C B ~ v B Q 1 Q C A C B C A i C transconductor noise ~ n(.5+.66c k) i B1 i B I TAIL Q CS i BCS bias current-source noise ~ n(.5+c k) k A. Tasic 7 8

29 g m -Cell Noise Contributions k=.5g m R TK <.5g m,actual R TK =.5g m R TK /(1+g m r E )=k actual 1,95,9 F(I C ) simulations calculations F( rb ) nkc k.7 k 3 3,85,8,75, ,6,5 k 1,5 F (r B ) simulations calculations 1 n FI ( C ).87,5 k ,6 A. Tasic 7 9

30 Bias Noise Contributions F (I C,CS ) simulations calculation s F( r ) knkc k.41 k B, CS F (r B,CS ) simulation calculation s ,6 k F( IC, CS ) nk.8k k A. Tasic 7 3

31 Suppression of Bias Current-Source Noise in LC-Oscillators A. Tasic 9 31

32 Outline Contribution of Bias Current-Source Noise to Phase Noise of LC-Oscillators Techniques for Reduction of Bias Current- Source Noise Noise Analysis of Degenerated Bias Current Source Bias Noise Suppression - Design Example A. Tasic 9 3

33 VCO Noise Contributions i GTK C V L V CC C V LC-tank noise ~ 1 V TUNE i C1 v B1 v B ~ Q 1 ~ Q C A C B C B C A i C transconductor noise ~.5+c k i B1 i B I TAIL Q CS i BCS bias current-source noise ~ (.5+c k) k A. Tasic 9 33

34 VCO Noise Contributions f ~5.74GHz, R TK ~34, n~1.65, c~.5, V CC =.V 1% 9% 8% 7% 6% 5% 4% 3% r B,CS I C,CS r B BCS: ~85% % 1% % I C R TK A. Tasic 9 g m : ~15% k 34

35 Phase-Noise Ratio PNR n k( nkc) L( RTK ) L( IC ) L( rb ) L( I BCS ) 1 L( R ) ( ) ( ) n TK L IC L rb 1 nkc 3 PNR[dB] PNR=8.dB k A. Tasic 7 35

36 common emitter (CE) resonant inductive degeneration (RID) resistive degeneration (RD) Bias Noise Reduction Techniques resistive degeneration inductive degeneration filtering? I TAIL ITAIL I TAIL V IN V IN + R - D LD V IN C D high supply required large area if integrated noise injection if discrete A. Tasic 9 transconductor noise always ON reduced output impedance 36

37 Capacitive Filtering AC short 1 d / f 1 d' (1 d) n F '( IC ) ~ k 1/f AC open 1 d/ f 1/ f 1 d k n F( IC ) ~ for k=1, d=5%, d =5.5%, and F >F A. Tasic 9 37

38 Bias Current Source with Resonant-Inductive Degeneration V IN C I TAIL L RID matched to C at f r B,CS noise contribution reduced transconductance gain small at resonance series resonance I B,CS noise contribution small L RID I C,CS noise contribution removed common-base like configuration (gain of 1) parallel resonance emitter open at resonance (I C,CS floats) A. Tasic 9 38

39 Circuit Diagram for Noise Transfer Functions B C r B,CS i B,CS C,CS E ~ (v B - v E )g m,cs i C,CS i OUT,CS v B,CS ~ L RID i C,CS to i OUT : v B,CS short, i B,CS open i B,CS to i OUT : v B,CS short, i C,CS open v B, CS to i OUT : i C,CS open, i B,CS open A. Tasic 7 39

40 i N iout ( I ) B, CS Bias Current-Source Noise Contributions i 1 v r f j C OUT T, CS ( f) gm( ) ( 1 N B, CS ) T, CS T LRID j LRID g m, CS ( f ) 1 C rb, CS 1 f g 1 ( ) m, CS j C rg B m LRID j L f RID T 1 f series resonance i N iout ( I ) C, CS g parallel resonance m, CS ( f ) 1 1 C rb, CS 1 f g 1 ( ) m, CS j C rg B m LRID j L f RID T, CS A. Tasic parallel resonance

41 BCS w/ RID vs. BCS w/o RID BCS noise with degeneration g f 1 f i 4kT ( ) r g m, CS T, CS CS, RID B, CS m, CS f ft, CS BCS noise without degeneration g f 1 i 4kT 1 ( ) r g m, CS T, CS CS B, CS m, CS f more than a factor (f T,CS /f ) noise reduction after RID f ics, RID ics ft, CS for (f T,CS /f )=5, a factor of 5 reduction A. Tasic 7 41

42 VCO Noise Contributions after RID applied to BCS f ~5.74GHz, L RID ~1.3nH, R TK ~34, n~1.65, c~.5, V CC =.V 1% BCS: ~6% r B,CS I C,CS 8% r B 6% 4% g m : ~94% I C % R TK % k A. Tasic 9 4

43 5.7GHz band VCO buffer RID LC-tank -g-cell m 5 metals active area.1mm buffer L RID =.6nH, 7-turns,.1mm A. Tasic 7 43

44 VCO w/ RID vs. VCO w/o RID to ground to ground to TCS transistors to ground A. Tasic 9 44

45 Phase Noise (w/ RID vs. w/o RID) without RID with RID 6dB phase-noise improvement with RID from A. Tasic 5.7GHz 4.8mA&.V 45

46 RID Conclusions BCS noise >> g m -cell and LC-tank noise Resonant inductive degeneration good suppression of high frequency BCS noise low voltage operation small chip area (vs. discrete solutions) BCS DC noise upconversion large area (vs. resistive degeneration) poorer noise suppression at high supplies (vs. resistive degeneration) A. Tasic 9 46

47 Oscillator Conclusions Spectral Analysis of Noise in LC-Oscillators Phase-Noise Model LC-tank, g m -cell, bias current source contributions Bipolar vs. CMOS LC-Oscillators Oscillator Noise Reduction Methods Resonant-Inductive Degeneration A. Tasic 9 47

48 Future Worries Low-(Supply and Swing)-Voltage Operation Linear and Quasi-Linear Phase-Noise Model Low-Performance Oscillators Noise-Reduction Methods A. Tasic 9 48

49 Conclusions A. Tasic 9 49

50 Conclusions Spectral Analysis of Noise in LC-Oscillators LC-tank, g m -cell, bias current source noise contributions Bipolar and CMOS VCO Noise Factors LC-Oscillators Noise Reduction Methods Mixer Noise Factor from VCO Noise Factor Oscillator Phase Noise in Receiver s SNR Mixer Noise Factor in a Receiver LNA Noise Factor in a Receiver BBFilter Noise Transfer vs. LO/Mix Duty A. Tasic 9 5

Spectral Analysis of Noise in Switching LC-Oscillators

Spectral Analysis of Noise in Switching LC-Oscillators Spectral Analysis of Noise in Switching LC-Oscillators 71 Sub-Outline Duty Cycle of g m -cell Small-Signal Gain Oscillation Condition LC-Tank Noise g m -cell Noise Tail-Current Source Noise (Phase) Noise

More information

Linear Phase-Noise Model

Linear Phase-Noise Model Linear Phase-Noise Model 41 Sub-Outline Generic Linear Phase-Noise Model Circuit-Specific Linear Phase-Noise Model 4 Generic Linear Phase-Noise Model - Outline Linear Oscillator Model LC-Tank noise active

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

Circuit Topologies & Analysis Techniques in HF ICs

Circuit Topologies & Analysis Techniques in HF ICs Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL Kevin Wang 1, Ashok Swaminathan 1,2, Ian Galton 1 1 University of California at San Diego, La Jolla, CA 2 NextWave

More information

Reciprocal Mixing: The trouble with oscillators

Reciprocal Mixing: The trouble with oscillators Reciprocal Mixing: The trouble with oscillators Tradeoffs in RX Noise Figure(Sensitivity) Distortion (Linearity) Phase Noise (Aliasing) James Buckwalter Phase Noise Phase noise is the frequency domain

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

Switching circuits: basics and switching speed

Switching circuits: basics and switching speed ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V

More information

Structured Electronic Design. Building the nullor: Distortion

Structured Electronic Design. Building the nullor: Distortion Structured Electronic Design Building the nullor: Distortion 1 Specs 1 N verification Topology Best nullor implementation Voltage and current swing Power consumption FINAL Noise level All stages maximal

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

EECS 105: FALL 06 FINAL

EECS 105: FALL 06 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL 24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL John G. Maneatis 1, Jaeha Kim 1, Iain McClatchie 1, Jay Maxey 2, Manjusha Shankaradas 2 True Circuits, Los Altos,

More information

Insulated Gate Bipolar Transistor (IGBT)

Insulated Gate Bipolar Transistor (IGBT) BUK856-8A GENERAL DESCRIPTION QUICK REFERENCE DATA Fast-switching N-channel insulated SYMBOL PARAMETER MAX. UNIT gate bipolar power transistor in a plastic envelope. V CE Collector-emitter voltage 8 V

More information

ECE315 / ECE515 Lecture 11 Date:

ECE315 / ECE515 Lecture 11 Date: ecture 11 Date: 15.09.016 MOS Differential Pair Quantitative Analysis differential input Small Signal Analysis MOS Differential Pair ECE315 / ECE515 M 1 and M are perfectly matched (at least in theory!)

More information

Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology

Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology Takao Kihara, Shigesato Matsuda, Tsutomu Yoshimura Osaka Institute of Technology, Japan June 27, 2016 2 / 16

More information

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Main CMOS design rules & basic circuits GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

Fundamentals of PLLs (III)

Fundamentals of PLLs (III) Phase-Locked Loops Fundamentals of PLLs (III) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Phase transfer function in linear model i (s) Kd e (s) Open-loop transfer

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Transistor Noise Lecture 10 High Speed Devices

Transistor Noise Lecture 10 High Speed Devices Transistor Noise 1 Transistor Noise A very brief introduction to circuit and transistor noise. I an not an expert regarding noise Maas: Noise in Linear and Nonlinear Circuits Lee: The Design of CMOS RFIC

More information

IRGB4056DPbF. n-channel Lead Free Package INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

IRGB4056DPbF. n-channel Lead Free Package INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE 1 www.irf.com 4/11/8 PD - 97188A INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology C Low switching losses Maximum Junction temperature 17

More information

n-channel Solar Inverter Induction Heating G C E Gate Collector Emitter

n-channel Solar Inverter Induction Heating G C E Gate Collector Emitter INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C Low V CE (ON) trench IGBT technology Low switching losses Square RBSOA 1% of the parts tested for I LM Positive V CE (ON)

More information

13. Bipolar transistors

13. Bipolar transistors Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector

More information

Voltage-Controlled Oscillator (VCO)

Voltage-Controlled Oscillator (VCO) Voltage-Controlled Oscillator (VCO) Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range f max f osc Well-defined K vco f min slope = K vco VC V C in V K F(s)

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Integrated Circuit Operational Amplifiers

Integrated Circuit Operational Amplifiers Analog Integrated Circuit Design A video course under the NPTEL Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India National Programme on Technology Enhanced

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L6: Common Source Amplifier-1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L - CC A 100

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI INGEGNERIA ELETTRICA, ELETTRONICA E DEI SISTEMI Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

IRGS4062DPbF IRGSL4062DPbF

IRGS4062DPbF IRGSL4062DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 µs short circuit SOA Square

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

n-channel Standard Pack Orderable part number Form Quantity IRG7PH35UD1MPbF TO-247AD Tube 25 IRG7PH35UD1MPbF

n-channel Standard Pack Orderable part number Form Quantity IRG7PH35UD1MPbF TO-247AD Tube 25 IRG7PH35UD1MPbF IRG7PH3UDMPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS Features C Low V CE (ON) trench IGBT Technology Low Switching Losses Square

More information

(3), where V is the peak value of the tank voltage in the LC circuit. 2 The inductor energy is: E.l= LI 2

(3), where V is the peak value of the tank voltage in the LC circuit. 2 The inductor energy is: E.l= LI 2 Frequency compensated LC networks for oscillators with the wide tuning range. Theoretical discussion section. by Vladimir Novichkov 02/2/202 rev 0.42. Properties of passive, capacitively tuned LC resonator

More information

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT PD- 95899A IRGPS4B12UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT Features Non Punch Through IGBT Technology. 1µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient.

More information

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF PD - 973 INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE (on) Non Punch Through IGBT Technology 1µs Short Circuit Capability Square RBSOA G Positive VCE (on) Temperature Coefficient Maximum Junction

More information

IRGB30B60K IRGS30B60K IRGSL30B60K

IRGB30B60K IRGS30B60K IRGSL30B60K INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE on) Non Punch Through IGBT Technology. µs Short Circuit Capability. Square RBSOA. Positive VCE on) Temperature Coefficient. Maximum Junction Temperature

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

Absolute Maximum Ratings Parameter Max. Units

Absolute Maximum Ratings Parameter Max. Units PD - 97397A INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses 5 µs short circuit SOA Square RBSOA % of the parts tested

More information

Two-Port Noise Analysis

Two-Port Noise Analysis Berkeley Two-Port Noise Analysis Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2015 by Ali M. Niknejad 1/26 Equivalent Noise Generators v 2 n Noisy Two-Port i 2 n Noiseless Two-Port Any noisy two port

More information

Parameter Max. Units V CES Collector-to-Emitter Breakdown Voltage 600 I T C = 25 C Continuous Collector Current

Parameter Max. Units V CES Collector-to-Emitter Breakdown Voltage 600 I T C = 25 C Continuous Collector Current INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (on) Trench IGBT Technology Low Switching Losses 5μs SCSOA Square RBSOA % of The Parts Tested for I LM Positive V

More information

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Lecture 140 Simple Op Amps (2/11/02) Page 140-1 Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and

More information

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (on) Non Punch Through IGBT Technology. Low Diode V F. 1µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode

More information

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012 1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET D-FET (Depletion MOS) MOSFET (Enhancement E-FET) DC biasing Small signal

More information

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max.

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max. INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

Characteristic of Capacitors

Characteristic of Capacitors 3.5. The Effect of Non ideal Capacitors Characteristic of Capacitors 12 0 (db) 10 20 30 capacitor 0.001µF (1000pF) Chip monolithic 40 two-terminal ceramic capacitor 0.001µF (1000pF) 2.0 x 1.25 x 0.6 mm

More information

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E. Lecture 070 Stage Frequency esponse I (/0/0) Page 070 LECTUE 070 SINGLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 488504) Objective The objective of this presentation is:.) Illustrate the frequency analysis

More information

HN58C66 Series word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM. ADE F (Z) Rev. 6.0 Apr. 12, Description.

HN58C66 Series word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM. ADE F (Z) Rev. 6.0 Apr. 12, Description. 8192-word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM ADE-203-375F (Z) Rev. 6.0 Apr. 12, 1995 Description The Hitachi HN58C66 is a electrically erasable and programmable ROM organized as

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF ECE 342 Electronic Circuits ecture 25 Frequency esponse of CG, CB,SF and EF Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 342 Jose Schutt Aine 1 Common

More information

Dynamic operation 20

Dynamic operation 20 Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OVA & OTA 1 OVA VA-Operational Voltage Amplifier Ideally a voltage-controlled voltage source Typically contains an output stage that can drive arbitrary loads, including small resistances Predominantly

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

IXFL32N120P. Polar TM HiPerFET TM Power MOSFET V DSS I D25 = 1200V = 24A. 300ns. Preliminary Technical Information. R DS(on) t rr

IXFL32N120P. Polar TM HiPerFET TM Power MOSFET V DSS I D25 = 1200V = 24A. 300ns. Preliminary Technical Information. R DS(on) t rr Preliminary Technical Information Polar TM HiPerFET TM Power MOSFET ( Electrically Isolated Tab) V DSS I D25 R DS(on) t rr = V = 2A 3mΩ ns N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

More information

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE (on) Non Punch Through IGBT Technology. 1µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Lead-Free. Benefits Benchmark

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse

More information

IXBT20N360HV IXBH20N360HV

IXBT20N360HV IXBH20N360HV High Voltage, High Gain BIMOSFT TM Monolithic Bipolar MOS Transistor Advance Technical Information V CS = V = A V C(sat).V TO-HV (IXBT) Symbol Test Conditions Maximum Ratings V CS = C to C V V CGR = C

More information

IXBK55N300 IXBX55N300

IXBK55N300 IXBX55N300 High Voltage, High Gain BiMOSFET TM Monolithic Bipolar MOS Transistor IXBK55N3 IXBX55N3 V CES = 3V 11 = 55A V CE(sat) 3.2V TO-264 (IXBK) Symbol Test Conditions Maximum Ratings V CES = 25 C to 15 C 3 V

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

PARALLEL DIGITAL-ANALOG CONVERTERS

PARALLEL DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-1 10.2 - PARALLEL DIGITAL-ANALOG CONVERTERS CLASSIFICATION OF DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-2 CURRENT SCALING DIGITAL-ANALOG CONVERTERS GENERAL

More information

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab)

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab) GigaMOS TM Power MOSFET (Electrically Isolated Tab) N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode IXFR23N2T V DSS = 2V I D25 = 156A R DS(on) 8.m t rr 2ns ISOPLUS247 E153432 Symbol Test

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005 6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response

More information

IRGB4062DPbF IRGP4062DPbF

IRGB4062DPbF IRGP4062DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 75 C 5 µs short circuit SOA Square RBSOA

More information

=25 C Avalanche Energy, single pulse 65 I C. C Soldering Temperature, for 10 seconds 300, (0.063 in. (1.6mm) from case)

=25 C Avalanche Energy, single pulse 65 I C. C Soldering Temperature, for 10 seconds 300, (0.063 in. (1.6mm) from case) PD- 94117 IRGP2B12U-E INSULATED GATE BIPOLAR TRANSISTOR Features UltraFast IGBT UltraFast Non Punch Through (NPT) Technology 1 µs Short Circuit capability Square RBSOA Positive V CE (on) Temperature Coefficient

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

IXTH80N65X2 V DSS. X2-Class Power MOSFET = 650V I D25. = 80A 38m. R DS(on) N-Channel Enhancement Mode Avalanche Rated TO-247 G D S

IXTH80N65X2 V DSS. X2-Class Power MOSFET = 650V I D25. = 80A 38m. R DS(on) N-Channel Enhancement Mode Avalanche Rated TO-247 G D S X2-Class Power MOSFET V DSS = 6V I D25 = A 38m R DS(on) N-Channel Enhancement Mode Avalanche Rated TO-247 Symbol Test Conditions Maximum Ratings V DSS = 25 C to 1 C 6 V V DGR = 25 C to 1 C, R GS = 1M 6

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline

More information

IXBT12N300 IXBH12N300

IXBT12N300 IXBH12N300 High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor S 11 = 3V = A (sat) 3.2V TO-26 (IXBT) Symbol Test Conditions Maximum Ratings S = 25 C to 15 C 3 V V CGR = 25 C to 15 C, R GE = 1MΩ

More information

HN58C65 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

HN58C65 Series word 8-bit Electrically Erasable and Programmable CMOS ROM 8192-word 8-bit Electrically Erasable and Programmable CMOS ROM ADE-203-374A (Z) Rev. 1.0 Apr. 12, 1995 Description The Hitachi HN58C65 is a electrically erasable and programmable ROM organized as 8192-word

More information

IXBK55N300 IXBX55N300

IXBK55N300 IXBX55N300 High Voltage, High Gain BiMOSFET TM Monolithic Bipolar MOS Transistor V CES = V 11 = 55A V CE(sat) 3.2V TO-264 (IXBK) Symbol Test Conditions Maximum Ratings V CES = 25 C to 15 C V V CGR = 25 C to 15 C,

More information

Design of crystal oscillators

Design of crystal oscillators Design of crystal oscillators Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 22 Table of contents Oscillation principles Crystals Single-transistor oscillator

More information

IRGB4B60K IRGS4B60K IRGSL4B60K

IRGB4B60K IRGS4B60K IRGSL4B60K INSULATED GATE BIPOLAR TRANSISTOR PD - 9633A IRGBB6K IRGSB6K IRGSLB6K Features Low VCE (on) Non Punch Through IGBT Technology. 1µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature

More information

IRGB10B60KDPbF IRGS10B60KDPbF IRGSL10B60KDPbF

IRGB10B60KDPbF IRGS10B60KDPbF IRGSL10B60KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. μs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse

More information

IXFT100N30X3HV IXFH100N30X3

IXFT100N30X3HV IXFH100N30X3 X3-Class HiPerFET TM Power MOSFET Advance Technical Information IXFTN3X3HV IXFHN3X3 V DSS = 3V I D25 = A R DS(on) 13.5m N-Channel Enhancement Mode Avalanche Rated TO-268HV (IXFT) Symbol Test Conditions

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op mp Design - Single Stage ow Gain Op mps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op mp mplifier mplifier used in open-loop applications

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor IPI3N3LA, IPP3N3LA OptiMOS 2 Power-Transistor Features Ideal for high-frequency dc/dc converters Qualified according to JEDEC ) for target applications N-channel - Logic level Product Summary V DS 25 V

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

OptiMOS 3 Power-MOSFET

OptiMOS 3 Power-MOSFET BSB14N8NP3 G OptiMOS 3 Power-MOSFET Features Optimized technology for DC/DC converters Excellent gate charge x R DS(on) product (FOM) Low profile (

More information