Amplifiers, Source followers & Cascodes


 Alexia Ellis
 11 months ago
 Views:
Transcription
1 Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESATMICAS Leuven, Belgium Willy Sansen
2 Operational amplifier Differential pair v : B v + Current mirror v OUT Current mirror Singletransistor amplifier Willy Sansen
3 Table of contents Singletransistor amplifiers Source followers Cascodes Willy Sansen
4 Singletransistor amplifier  I L v GS  gm v GS r DS  A v = g m r DS = 2 I DS V E L = 2 V E L V GS V T I DS V GS V T A v 00 if V E L 0 V and V GS V T 0.2 V Willy Sansen
5 Singletransistor amplifier  2 High gain? Low V GS V T and large L!!! Willy Sansen
6 MOST or bipolar amplifier? MOST A v = V E L (V GS V T )/2 A v 00 if V E L 0 V and V GS V T 0.2 V Bipolar A v = V E kt/q 3 vs 2 stages for 0 6 A v 000 if V E 26 V since kt/q = 26 mv Willy Sansen
7 Gain, Bandwidth and Gainbandwidth I L +  C L A v0 = g m r DS BW = 2π r DS C L For all singlestage Operational amplifiers g m GBW = 2π CL Willy Sansen
8 Gain A v, BW and GBW A v A v0 BW 20 db/decade A v0 = g m r DS GBW g m GBW = 2π CL A v0 φ (A v ) 0 o f φ (A v ) =  45 o 90 o at BW Willy Sansen
9 Singletransistor amplifier : Exercise GBW = 00 MHz for C L = 3 pf Techno.: K n 50 µa/v 2 L min = 0.5 µm I DS? L? W? GBW.C L? I DS Willy Sansen
10 Gain, Bandwidth and Gainbandwidth I L A v0 = g m r DS R S +  BW = 2π R S C GS C GS g m GBW = 2π CGS r DS R S = f T r DS RS ~ WC ox V GS V T W? L? V GS V T? Willy Sansen
11 Gain, Bandwidth and Gainbandwidth R S C F I L + A v0 = g m r DS  BW = 2π RS A v0 C F GBW = 2π RS C F Willy Sansen
12 Miller effect I L C F R + S R S C FM I L A v0 = g m r DS C FM =(+A v0 ) C F Miller, Dependence of the input impedance of a threeelectrode vacuum tube upon the load in the plate circuit, Scient. Papers Bur. Standards, 920, Willy Sansen
13 Miller capacitance feedback effects R S C F I L + A v A v0 BW  j f/f A z v = A v0 + j f/f p + g m R S g m f z = 2π CF  φ (A v ) 0 o f p GBW f z f For phase, a positive zero is like a negative pole!!! 90 o  80 o Willy Sansen
14 Amplifier with local R (series) feedback g mr = g m C inr i out ~ RS R outr + g m R S RS R outr = r DS (+ g m R S ) (g m r DS ) R S C GS C inr = + gm R S But R S gives extra noise! Willy Sansen
15 Amplifier with local L feedback Z inl i out R outl g ml = g m + g m L S s R outl = r DS (+ g m L S s) L S L S Z inl = g m CGS + + L S C GS s 2 s C GS No extra noise! Z inl = L S ω T + L S s+ s CGS Willy Sansen
16 Amplifier with local MOSTR Feedback M M2 i out V DS2 = V GS2 V GS 0.2 V r DS2 = KP W 2 /L 2 (V GS2 V T ) R outr = r DS (+ g m r DS2 ) C inr = C GS +C GS2 + gm r DS2 Willy Sansen
17 Diodeconnected MOST : parallel Feedback I DS I DS V DS = V GS V T V DS = V GS G = D + V DS = V GS  saturation V GS I DS = K W n (V DS V T ) L 2 0 V T V DS Willy Sansen
18 Diodeconnected MOST: smallsignal I DS i DS G = D V DS = V GS  v GS g m v GS r DS r ds = /g m // r DS /g m Willy Sansen
19 Diodeconnected MOST at high frequencies I DS i DS + v GS + G = D DS = V GS V C GS  g m v GS r DS BW = g m C DS 2π (C GS +C DS ) f T 2 Willy Sansen
20 Wideband amplifier M2 V DD V OUT = V DD V GS2 (V OUT ) M A v0 = g m (W/L) g m2 = (W/L) 2 V GS2 V T = VGS V T R OUT = /g m2 Willy Sansen
21 Linear wideband amplifier 2I B V DD V OUT = V GS2 M M2 A v0 = g m (W/L) g m2 = (W/L) 2 V GS2 V T = VGS V T R OUT = /g m2 Current mirror with only nmosts Same V OUTDC as V INDC No body bias effect Good PSRR Double power consumption Willy Sansen
22 Wideband amplifiers 2I B 2I B M M2 M M2 A v0 = g m (W/L) g m2 = (W/L) 2 V GS2 V T = VGS V T A v0 = g m R out R out = /g m2 R out = r DS //r DS2 Willy Sansen
23 Class A versus class AB amplifier + i out M2 i out M2 M C L M C L = A v = A v Class A stage Class AB stage Willy Sansen
24 CMOS inverteramplifier V DD V DD 0 M2 0 M2 M M C L C L Digital invertor Analog amplifier Willy Sansen
25 Operating points nmost & pmost V DD I DS M2 I DS nmost M 4 M2 pmost M C L V DD = V DSn + V DSp V DSn = V OUT V DSp = V DD V OUT = V GSn + V GSp V GSn = V IN V GSp = V DD V IN V OUT Willy Sansen
26 Transfer characteristic V DD i DS M2 M C L V DD V DD 2 0 i DS I DSA = 0 = 5 V DD 2 Analog amplifier = = V DD 0 Willy Sansen
27 Analog amplifier : DC V DD i DSA V in = V DD V out = 2 V DD 2 M2 I DSn = K n (V in V T ) 2 v L in n C L M W n W p I DSp = K p (V DD V in V T ) 2 L p W n W n K I DS = K n ( V T ) 2 n = K p 2 L n W p L p L n V DD Willy Sansen
28 Analog amplifier : AC model V DD i DSA M2 M + C L  r DSn r DSp C L g mn v iv g mp v iv For the same I DS en V GS V T : g mn = g mp = g m Willy Sansen
29 Analog amplifier: AC gain Av V DD i DSA If V En L n =V Ep L p = V E M2 M C L g DSn = g DSp = g DS (g DS = /r DS ) 2g A v0 =  m =  2g DS V DD 2 2V E V T Willy Sansen
30 Analog amplifier : BW & GBW V DD i DSA M2 M C L A v0 = 2g m R out R out = r DS 2 BW = 2π Rout C L 2g m GBW = 2π CL Willy Sansen
31 Analog amplifier: poles due to CGS V DD A v0 = 2g m R out R S M2 2g m C GS M C L GBW = 2π CL C GSt = C GS + C GS2 But if R S C GSt > r DS C L : GBW = f T r DS R S Willy Sansen
32 Analog amplifier: poles due to CDG V DD C DG f d f nd R S C DG M2 C L g m R S f z M CL 2π R out C L A v0 (  sc DGt /g m ) = + s (R out C L + A v0 R S C DGt ) + s 2 R S R out C DGt C L f Willy Sansen
33 Analog amplifier: other poles V DD A v0 = 2g m R out C DG R S M2 GBW = M C L 2g m 2π C L C DGt = C DG + C DG2 But if R S C DGt > 2π GBW : GBW = 2π RS C DGt Willy Sansen
34 Class AB operation V DD i C M2 i C2 I C2 I C i L i C C L I DSA i L M 0 i L = i C2 i C V DD 2 VDD Willy Sansen
35 Table of contents Singletransistor amplifiers Source followers Cascodes Willy Sansen
36 Singletransistor stages Common source Common drain Common gate i out v vin out v Rout in V B I V B B + i out R in i in I B i out = g m = i out = i in R out /g m R in /g m Amplifier Source follower Cascode Voltage buffer Current buffer Willy Sansen
37 Source follower with V BS = 0 (pwell) R S Z OUT = gm V GS = V T0 + I B K W/L V GS = ct if I B = ct V B I B R B C L V OUT = V IN V GS V OUT = V IN A v = Willy Sansen
38 Source follower with V BS 0 (nwell) R S Z OUT < gm V GS = V T + V GS ct I B K W/L VB I B R B C L V OUT = V IN V GS A v = V T = V T0 + γ [ 2Φ F +V OUT  2Φ F ] n Willy Sansen
39 Source follower nonlinearity R S V OUT γ = 0 slope VB I B C L γ = 0.8 V /2 slope /n 0 V T V IN Willy Sansen
40 Emitter follower R S R OUT R S R IN VB I B C L V B R E R S +r B A v = R OUT = + g m β+ Limited isolation! R IN = r π +r B + (β+)r E Willy Sansen
41 Source follower with C L load g m 0mS g mr f d f nd f z A v = ( + s C GS /g m ) + s B + s 2 C 2 R S /g m ms 0.mS A v 0. f d M G Hz g mr f B = R S C DG + C DS g m C GS g m R S + (+ ) r DS 0.0 C 2 = C DS C DG f C DS C GS + C DG C GS C DS = C L + C DS M G Hz Willy Sansen
42 Source follower with C L load g m 0mS ms 0.mS A v f d f g nd mr f g z mr g mr = R S g mu f d M G Hz g mr f g mr = C DGt C DG C DGt = C L + C DS + C GS C DG C DS C GS C DS + C GS 0.00 M G Hz f g mu = R S Willy Sansen
43 Source follower : Output impedance g m 0mS g mr f z f d f nd g mr = C GS + C DS R S C DG ms g mu 0.mS Z out 0kΩ k g mu f d f nd M G Hz f g mu f z = C GS + C DS R S C GS + C DG 00 0 g mr M Inductive G Hz f 2π R S C GS f d,higm = 2π R S C DG Willy Sansen
44 Emitter follower : Output impedance g m 0mS ms 0.mS Z out 0kΩ k 00 0 f d f nd C π + C CE g f mr z g mr = R S C π + C µ g mu g mu g mr f d M G Hz M f nd Inductive G L = R S ω T Hz f f g mu f z = C je + C CE R S C je + C µ 2π R S //r π (C π +C µ ) Willy Sansen
45 Source follower as active L V B R S C GS I B Z OUT C L g m g m Z OUT L R S f Z OUT ( + R g S C GS s) m L R S 2π f T f T g m R S f T g m up to f T = 2π CGS Willy Sansen
46 Source follower as active L R S L L L I B I B I B2 I B I B2 L R S 2π f T L /g mp 2π f Tn L /g mp 2π f Tn V DSn = V GSn V DSn = V GSn + V GSp V DSn = V GSp Willy Sansen
47 Floating inductor with parallel C R tune R tune L = R tune ω T2 T 2 V out+ V out V out+ V out V in T C V in+ C I B A v = g m g m2 with HF peaking! Willy Sansen
48 Table of contents Singletransistor amplifiers Source followers Cascodes Willy Sansen
49 Singletransistor stages Common source Common drain Common gate i out v vin out v Rout in V B I V B B + i out R in i in I B i out = g m = i out = i in R out /g m R in /g m Amplifier Source follower Cascode Voltage buffer Current buffer Willy Sansen
50 Cascode with resistive load A R? R L A R = R L + i DS R in? i in I B g m r DS R Lc R L A R = R i in = in iin Willy Sansen
51 Cascode with resistive load R L i L g m R B i ds i in + i ds r DS i L i in I B R B i in R Lc = g m r DS R B R Lc R L Willy Sansen
52 Cascode with active load A R i B R Lc + i DS r DS A R R in R B i in I B R B g m r DS R Lc R L A R = R in = iin iin R Lc = g m r DS R B 00 R B Willy Sansen
53 Cascode versus singletransistor I B I B + M2 M M A v = (g m r DS ) R out = r DS A v = (g m r DS ) (g m r DS ) 2 R out = r DS (g mr DS ) 2 Willy Sansen
54 Cascode versus singletransistor I B I B + M2 M C L M C L BW = 2π R out C L g m GBW = for both! 2π C L Willy Sansen
55 Cascode versus singletransistor I B A v + M I B M2 C L A v2 = g m2 r DS2 A v = g m r DS Single transistor GBW M C L Cascode : High gain At low freq. f g m GBW = 2π CL Willy Sansen
56 Miller effect in cascode? A v2 = g m2 r o2 A v = g m r o I B R S A v R S C M f nd r o2 C L R S C M + M2 v m C L R St f d R S C M M A v2 r o C L f g m GBW = 2π CL C L No Miller if R S < R St = r o2 CM g m2 g m Willy Sansen
57 Cascode with capacitance Cm at middle point A v2 = g m2 r o2 A v = g m r o2 I B C m r o C m f nd r o2 C L R S + M2 v m C L C mt f d C m /g m2 M C m A v2 r o C L g m GBW = 2π CL C mt = g m2 r o2 C L = A v2 C L f Willy Sansen
58 Telescopic Cascode +3 M4 A v = g m R out +2 + M3 M2 I B R out R out = r DS g m2 r DS2 2 M C L BW = 2π Rout C L g m GBW = 2π CL Willy Sansen
59 Folded Cascode I B A v = g m R out M2 + R out = r DS g m2 r DS2 M i ds BW = 2π Rout C L I B2 C L g m GBW = 2π CL I DS = I B I B2 I B / 2 Willy Sansen
60 Cascode versus cascade I B I B I B2 + M2 M M M2 A v = (g m r DS ) (g m r DS ) 2 A v = (g m r DS ) (g m r DS ) 2 Willy Sansen
61 Cascode versus cascade I B Twostage Miller amplifier + M2 I B C c I B2 C L M M M2 CL g m GBW = 2π CL g m GBW = 2π Cc Willy Sansen
62 Regulated cascode or gain boosting I B I B I B2 M2 + M2 M M M3 A v = (g m r DS ) (g m r DS ) 2 A v = (g m r DS ) (g m r DS ) 2 (g m r DS ) 3 Hosticka, JSSC Dec.79, pp. 4; Sackinger, JSSC Febr.90, pp ; Bult JSSC Dec.90, pp Willy Sansen
63 Regulated cascode, Cascode & singletransistor A v Reg.cascode A v = g m r DS I B I B2 A v3 A v2 = g m2 r DS2 A v3 = g m3 r DS3 C L M2 A v2 Cascode M M3 A v Single trans. GBW GBW = g m 2π CL f Willy Sansen
64 Gain boosting +V B A gb I B A A gb BW gb M2 C L M A casc A v = A gb (g m r DS ) (g m r DS ) 2 GBW gb f z = GBW g m 2π C L Willy Sansen f
65 Polezero doublet and settling time A v V OUT A v0 V IN τ GBW τ pz f pz BW f pz GBW f t t V OUT = V IN [  exp ( )  exp ( )] 0 τ GBW Kamath, etal, JSSC Dec.74, pp f pz GBW τ pz f pz = GBW = t 2π τ pz 2π τ GBW Willy Sansen
66 Singletransistor stages i out vin + i out i in V B V B I B I B i out = g m = i out = i in Z out /g Z m in /g m Amplifier Source follower Cascode Willy Sansen
67 MOST amplifier & follower i out i out R S R out R out R B R S R out I B +  R out R B R B > /g m R B > /g m A G A V g m /R B R in R out r o g m R B r o /g m /g m Willy Sansen
68 Bipolar transistor (β >> ) R in R in i out i out R S R out R out R B R S R out I B +  R out R B R B > /g m R B > /g m A G A V g m /R B R in r B +r π r B +r π +βr B r B +r π +βr o r B +r π +βr B R out r o g m R B r o /g m + R S /β /g m + R S /β Willy Sansen
69 In & output resistances MOST cascode R L R out R L R out R out R out R in R in R in R in R B i in I B i in R B i in I B i in R B > /g m R B > /g m A R R in R L R L g m r o R B  /g m /g m R B R out g m r o R B g m r o R B Willy Sansen
70 In & output resistances Bipolar trans. cascode R L R L R out R out R out R out R in R in R in R in R B i in I B i in R B i in I B i in R B > /g m R B > /g m A R R L R L g m r o R B  R in /g m /g m R B //(r B +r π ) r B +r π R out g m r o R B g m r o (R B //(r B +r π )) βr o βr o Willy Sansen
71 Calculation of AR for a MOST cascode R out R in + v  g m v r o g m v + R B i in R B i in i in  R B > /g m v =  A R = g m r o R B = g m vr o =  R B yields =  R B i in ( + g m r o ) and g m r o >> Willy Sansen
72 Table of contents Singletransistor amplifiers Source followers Cascodes Willy Sansen
Systematic Design of Operational Amplifiers
Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 1005 061 Table of contents Design of Singlestage OTA Design of
More informationFeedback Transimpedance & Current Amplifiers
Feedback Transimpedance & Current Amplifiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 1005 141 Table of contents Introduction Shuntshunt FB for Transimpedance
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationStability of Operational amplifiers
Stability o Operational ampliiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 005 05 Table o contents Use o operational ampliiers Stability o 2stage opamp
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationLecture 140 Simple Op Amps (2/11/02) Page 1401
Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and
More informationDesign of crystal oscillators
Design of crystal oscillators Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 005 22 Table of contents Oscillation principles Crystals Singletransistor oscillator
More information3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti
Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +
More informationEECS 105: FALL 06 FINAL
University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 23:30 Wednesday December 13, 12:303:30pm EECS 105: FALL 06 FINAL NAME Last
More informationAdvanced Current Mirrors and Opamps
Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 WideSwing Current Mirrors I bias I V I in out out = I in V W L bias 
More informationLecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics Lena Peterson 20151013 Outline (1) Why is the CMOS inverter gain not infinite? Largesignal
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationCommon Drain Stage (Source Follower) Claudio Talarico, Gonzaga University
Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i  v o V DD v bs  v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs  C
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More information1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012
/3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS V th " VGS vi  I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering HighFrequency Model BJT & MOS B or G r x C f C or D r
More informationAdvanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response
Advanced Analog Integrated Circuits Operational Transconductance Amplifier I & Step Response Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard Boser
More informationRadivoje Đurić, 2015, Analogna Integrisana Kola 1
OVA & OTA 1 OVA VAOperational Voltage Amplifier Ideally a voltagecontrolled voltage source Typically contains an output stage that can drive arbitrary loads, including small resistances Predominantly
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationLecture 310 OpenLoop Comparators (3/28/10) Page 3101
Lecture 310 OpenLoop Comparators (3/28/10) Page 3101 LECTURE 310 OPENLOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, openloop comparators Twopole, openloop
More informationElectronic Devices and Circuits Lecture 18  Single Transistor Amplifier Stages  Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
More informationPractice 7: CMOS Capacitance
Practice 7: CMOS Capacitance Digital Electronic Circuits Semester A 2012 MOSFET Capacitances MOSFET Capacitance Components 3 Gate to Channel Capacitance In general, the gate capacitance is similar to a
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationExact Analysis of a CommonSource MOSFET Amplifier
Exact Analysis of a CommonSource MOSFET Amplifier Consider the commonsource MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationGEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 Third Exam Closed Book and Notes Fall 2002 November 27, 2002 General Instructions: 1. Write on one side of the
More informationCircuit Topologies & Analysis Techniques in HF ICs
Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More information6.2 INTRODUCTION TO OP AMPS
Introduction to Op Amps (7/17/00) Page 1 6.2 INTRODUCTION TO OP AMPS INTRODUCTION Objective The objective of this presentation is: 1.) Characterize the operational amplifier 2.) Illustrate the analysis
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationECE 523/421  Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42  Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationLast Name _Di Tredici_ Given Name _Venere_ ID Number
Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with
More informationElectronics II. Midterm II
The University of Toledo f4ms_elct7.fm  Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm  Problem 7 points Given in
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTCAL ENGNEENG Subject
More informationStability and Frequency Compensation
類比電路設計 (3349)  2004 Stability and Frequency ompensation hingyuan Yang National hunghsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,
More informationMICROELECTRONIC CIRCUIT DESIGN Second Edition
MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113
More informationCMOS Analog Circuits
CMOS Analog Circuits L6: Common Source Amplifier1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L  CC A 100
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationPreamplifier in 0.5µm CMOS
A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shuntpeaked Amplifier Inductor Modeling
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationBipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower Onepole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More informationLecture 150 Simple BJT Op Amps (1/28/04) Page 1501
Lecture 50 Simple BJT Op Amps (/28/04) Page 50 LECTURE 50 SIMPLE BJT OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationECE 546 Lecture 11 MOS Amplifiers
ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase
More informationMicroelectronics Main CMOS design rules & basic circuits
GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN
ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Openloop Gain: g m r o
More informationECE 342 Electronic Circuits. 3. MOS Transistors
ECE 342 Electronic Circuits 3. MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to
More informationAdvantages of Using CMOS
Advantages of Using CMOS Compact (shared diffusion regions) Very low static power dissipation High noise margin (nearly ideal inverter voltage transfer characteristic) Very well modeled and characterized
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationECEN 610 MixedSignal Interfaces
ECEN 610 MixedSignal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 014 S. HoyosECEN610 1 SampleandHold Spring 014 S. HoyosECEN610 ZOH vs. TrackandHold V(t)
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More information6.301 SolidState Circuits Recitation 14: OpAmps and Assorted Other Topics Prof. Joel L. Dawson
First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through
More informationAdvanced Analog Integrated Circuits. Operational Transconductance Amplifier II MultiStage Designs
Advanced Analog Integrated Circuits Operational Transconductance Amplifier II MultiStage Designs Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard
More informationECE 6412, Spring Final Exam Page 1
ECE 64, Spring 005 Final Exam Page FINAL EXAMINATION SOLUTIONS (Average score = 89/00) Problem (0 points This problem is required) A comparator consists of an amplifier cascaded with a latch as shown below.
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationLecture 28 FieldEffect Transistors
Lecture 8 FieldEffect Transistors FieldEffect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use smallsignal equialent
More informationFrequency Detection of CDRs (1)
Frequency Detection of CDs (1) ecall that faster PLL locking can be accomplished by use of a phasefrequency detector (PFD): V in V up V up V dn 4 π 2 π +2 π +4 π φ in φ out 2V swing V f V dn K pd =
More informationECE315 / ECE515 Lecture 11 Date:
ecture 11 Date: 15.09.016 MOS Differential Pair Quantitative Analysis differential input Small Signal Analysis MOS Differential Pair ECE315 / ECE515 M 1 and M are perfectly matched (at least in theory!)
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More information55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
More informationLecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005
6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationEE 330 Lecture 17. MOSFET Modeling CMOS Process Flow
EE 330 Lecture 17 MOSFET Modeling CMOS Process Flow Review from Last Lecture Limitations of Existing Models V DD V OUT V OUT V DD?? V IN V OUT V IN V IN V DD SwitchLevel Models V DD Simple squarelaw
More informationCHAPTER 6 CMOS OPERATIONAL AMPLIFIERS
Chapter 6 Introduction (6/24/06) Page 6.0 CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS INTRODUCTION Chapter Outline 6. CMOS Op Amps 6.2 Compensation of Op Amps 6.3 TwoStage Operational Amplifier Design 6.4 Cascode
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationCE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202  Manuel Toledo August 20, 2012 INEL 4202  Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationCHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis  Bode plot low frequency response BJT amplifier Miller
More informationCHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012
1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET DFET (Depletion MOS) MOSFET (Enhancement EFET) DC biasing Small signal
More informationECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
More informationLecture 04: Single Transistor Ampliers
Lecture 04: Single Transistor Ampliers Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture IV 1 / 37 SingleTransistor
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationLECTURE 130 COMPENSATION OF OP AMPSII (READING: GHLM , AH )
Lecture 30 Compensation of Op AmpsII (/26/04) Page 30 LECTURE 30 COMPENSATION OF OP AMPSII (READING: GHLM 638652, AH 260269) INTRODUCTION The objective of this presentation is to continue the ideas of
More information3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]
Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an nchannel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3
More informationErrata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg
Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.23, CISW CJSW 88 Line between Eqs. (3.32)
More informationEE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors
EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationVLSI GATE LEVEL DESIGN UNIT  III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT
VLSI UNIT  III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large
More information