The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

Size: px
Start display at page:

Download "The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1"

Transcription

1 Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W fin =20nm) with High Mobility (μ Hole =700 cm 2 /Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate A. Agrawal 1, M. Barth 1, G. B. Rayner Jr. 2, V. T. Arun 1, C. Eichfeld 1, G. Lavallee 1, S-Y. Yu 1, X. Sang 3, S. Brookes 3, N. Agrawal 1, Y. Zheng 1, Y-J. Lee 4, Y-R. Lin 4, C-H. Wu 4, C-H. Ko 4, J. LeBeau 3, R. Engel-Herbert 1, S. E. Mohney 1, Y-C. Yeo 4 and S. Datta 1 1 The Pennsylvania State University 2 Kurt J. Lesker Company 3 North Carolina State University 4 Taiwan Semiconductor Manufacturing Company 1

2 Outline High Mobility Strained Germanium (s-ge) QW Novel Tri-layer Dielectric Integration on Ge s-ge QW on silicon Buffer Design and Growth s-ge QW FinFET Fabrication and Characterization Benchmarking 2

3 Strain-Enhanced Mobility Mobility [cm 2 /Vs] % strained-ge QWFET (T QW =15nm) 4x Relaxed-Ge MOSFET Strained Si Biaxial Compressive Strain s-ge QW SiGe Buffer Si Substrate 1 10 Hole Density [x10 12 /cm 2 ] *R. Pillarisetty, Nature 2011 r-ge Si Substrate 4x higher hole mobility for s-ge QWFET compared to r-ge MOSFET 3

4 Pt/Ti/ Au Si cap vs. GeOx IL Pd/Au 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer Boron δ-doping 2x10 18 /cm 3 20nm 5x10 18 /cm 3 Phos Doping Si Substrate Pt/Ti/ Au 250 nm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer High-k Cap Layer 10A Si Limits EOT Scaling Capacitance [ F/cm 2 ] Si cap passivation limits EOT scaling 3.0 f=1mhz w/ Si cap 0.5 Planar Gate Voltage [V] Ge QW/10A Si cap/5a Al 2 O 3 /22A HfO 2 4

5 Pt/Ti/ Au Si cap vs. GeOx IL Pd/Au 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer Boron δ-doping 2x10 18 /cm 3 20nm 5x10 18 /cm 3 Phos Doping Si Substrate Pt/Ti/ Au 250 nm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer High-k Cap Layer 10A Si Limits EOT Scaling 6A GeOx Low EOT, low D IT achieved Capacitance [ F/cm 2 ] 3.0 f=1mhz 2.5 GeOx IL X w/ Si cap 0.5 Planar Gate Voltage [V] Ge QW/6A GeOx IL/5A Al 2 O 3 /22A HfO 2 GeOx IL passivation instead of Si cap realized Low EOT of 0.83nm obtained on Ge QW 5

6 Bulk FinFET vs. QW FinFET Biaxial Strain r-ge Si Substrate s-ge QW SiGe Buffer Si Substrate W Fin High-k Cap layer Gate Metal r-ge High-k Cap Layer Gate Metal s-ge T QW r-ge SiGe Buffer Si Substrate Si Substrate Both W fin and T QW determine strain in Ge QW 6

7 S-Ge QW FinFET Highlights Channel Strain Asymmetric Uniaxial strain; μ Hole Enhancement Gate Metal s-ge Ge-Passivation In-situ H-Plasma clean Controlled sub-nm GeO x ; Low D IT Ultrathin EOT Phos Doping SiGe Buffer Si Substrate SiGe Buffer Optimization Retrograde Phos Doping; Eliminate parallel channel Scaled FinFET 20nm Fin Width; E-Mode Operation 7

8 Tri-Layer High-κ Gate Stack GOAL: Sub-1 nm (EOT) Metal 1.5eV p-ge E C E F E V 2.5eV HfO 2 Al 2 O 3 GeO x Reduce gate leakage Prevent HfO 2 -GeO x intermixing Reduce D IT Low temperature process prevent Si- Ge interdiffusion 8

9 GeO x Thickness [A] Tri-Layer Process Flow Native GeO x 30 sec, 100W H-Plasma T=250C Time [mins.] GeO x Thickness [A] O-Plasma 125W, 2 sec Pulse Plasma-OFF Plasma-ON T=250C Time [mins.] Cycle # Removal of native GeO x with low power H- Plasma etch High quality, uniform GeO x IL formed using low power O-Plasma pulse 9

10 Al 2 O 3 Thickness [A] 4 2 Tri-Layer Process Flow Thermal ALD TMA Precursor + H 2 O 6 T=250C Nucleation delay Cycle # HfO 2 Thickness [A] Thermal ALD TDMAH Precursor + H 2 O T=250C No Nucleation delay Cycle # Ultrathin Al 2 O 3 cap layer and HfO 2 high-κ deposited using Thermal ALD 10

11 Tri-Layer High-κ: In-situ GeO x Passivation Ge 17A HfO 2 6A GeO x / 5A Al 2 O 3 2nm Count [a.u.] Ge O Al Hf Depth [nm] In-situ plasma clean and GeO x IL realized for enhanced surface passivation Low power plasma reduces surface roughness 11

12 Capacitance [ F/cm 2 ] Tri-Layer High-κ/Ge C-V Characteristics HfO 2 / 5A Al 2 O 3 / 6A GeO x /p-ge 20A 75kHz to 2MHz 22A 30A HfO 2 Thickness T=300K 17A HfO 2 /3A Al 2 O 3 / 6A GeO x /p-ge D IT [/cm 2 /ev] A 20A E V 22A 30A HfO 2 Thickness Gate Voltage [V] Energy [E-E V ] HfO 2 /5A Al 2 O 3 /6A GeO x /p-ge EOT of ~0.72nm achieved Band-edge D IT from low to /cm 2 /ev in midgap observed 12

13 J G [A/cm 2 ] Gate Leakage Reduction HfO 2 /5A Al 2 O 3 /6A GeO x /p-ge [2] 22A HfO 2 /2A Al 2 O 3 /3A GeO x HfO X Reducing T=300K Gate Voltage [V] J G [A/cm 2 V FB -1V [1] HfO 2 (no IL) HfO 2 /Al 2 O 3 /GeO x [3] 4X This work HfO 2 /Al 2 O 3 /GeO x [4] HfO 2 (w/ IL) [1] Poly Si/SiO 2 [2] Al 2 O 3 /GeO x EOT [nm] Low gate leakage of 10-2 A/cm 2 (V G =V FB -1V) obtained at 0.72nm EOT with Tri-layer gate stack [1] C. Choi et al., EDL 2004 [2] R. Zhang et al., IEDM 2011 [3] R. Zhang et al., IEDM 2013 [4] R. Xie et al., IEDM

14 s-ge QW on Silicon: SiGe Buffer Optimization Si Cap 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer 3nm Boron Modulation doping Depth=150nm, 250nm Si 0.3 Ge 0.7 Buffer 20nm 5x10 18 /cm 3 Phos Doping 2 μm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer Si Substrate I D [ A/ m] mV/dec Planar w/ Si cap Phos Doping Depth No Phos Depth=150nm V DS =-0.5V L G =5 m Depth=250nm Gate Voltage [V] 10 3 X I OFF reduction with deeper Phos doping in SiGe buffer with no degradation in I ON 14

15 I D [ A/ m] QW MOSFET with Tri-layer High-k V DS =-0.05V, -0.5V L G =5 m w/ Si cap 100mV/dec Planar w/ GeOx IL 96mV/dec Gate Voltage [V] Source Current [ A/ m] V G -V T =-1V to 1V V G,Step =0.1V L G =5 m w/ Si Cap Drain Voltage [V] w/ GeOx IL Ge QW/Si Cap or GeO x IL/5A Al 2 O 3 /22A HfO 2 2X higher I ON (V DS =-0.5V) with 96 mv/dec subthreshold slope obtained with Tri-layer high-κ 15

16 Hole Mobility [cm 2 /Vs] 1000 Drift Mobility 100 w/ GeOx IL w/ Si Cap This work 4X Si Universal Unstrained Ge Hole Density [/cm 2 ] Hole Mobility [cm 2 /Vs] [1] IEDM, 2010 [1] IEDM, 2010 This work w/ Si cap 4X [3] IEDM, [2] VLSI, EOT [A] 25 Ns=5x10 12 /cm 2 4X higher hole mobility compared to r-ge achieved [1] R. Pillarisetty et al., IEDM 2010 [2] J. Mitard et al., VLSI 2009 [3] O. Weber et al., IEDM

17 Hole Mobility [cm 2 /Vs] 1000 Drift Mobility 100 w/ GeOx IL w/ Si Cap This work Si Universal 4X Unstrained Ge Hole Density [/cm 2 ] Hole Mobility [cm 2 /Vs] This work w/ GeOx IL [1] IEDM, 2010 [1] IEDM, 2010 This work w/ Si cap 4X [3] IEDM, [2] VLSI, EOT [A] 25 Ns=5x10 12 /cm 2 Highest hole mobility at lowest EOT achieved with GeO x IL [1] R. Pillarisetty et al., IEDM 2010 [2] J. Mitard et al., VLSI 2009 [3] O. Weber et al., IEDM

18 Outline Integrate s-ge QW and Tri-layer high-κ in a FinFET 18

19 Asymmetric Strained FinFET Biaxial Compressive Strain Z Y X Transverse (100) ε XX [%] s-ge QW Phos Doping SiGe Buffer Si Substrate Transverse Strain, XX [%] Phos Doping SiGe Buffer Si Substrate Position Across Fin [nm] Strain relaxation near sidewall results in net uniaxial strain along the channel direction 19

20 Transverse Strain, xx [%] Fin Mobility Fin Width [nm] Longitudinal Strain, YY [%] nm Uniaxial Strain [%] Mobility enhancement due to increasing uniaxial compressive strain with reducing W fin 20 Hole Mobility [cm 2 /Vs] Ns=10 13 /cm (110)Ge Wfin (100)Ge 50nm * M. Chu et al., Annu. Rev. Mater. Res. 2009

21 FinFET Fabrication Flow 1 nm Si Cap 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer 3nm Boron Modulation doping 250 nm Si 0.3 Ge 0.7 Buffer PR PR 10 nm Ge QW 20nm 5E18 /cm 3 Phos Doping 2 μm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer Si Substrate Gate Metal Fin Pattern + Hardmask Deposition Si 0.3 Ge 0.7 Buffer Fin Pattern + Deposit Hardmask Dry RIE Etch 10nm Ge QW B-doping Si 0.3 Ge 0.7 Buffer 20nm 5E18 /cm 3 Phos Doping 500 nm Si 0.7 Ge 0.3 Buffer Si Substrate Tri-Layer High-k + Gate Patterning SiGe Buffer 21 FinFET fabrication using Sidewall Image Transfer (SIT)

22 FinFET Fabrication : SEM Source Gate Fin W fin =20nm Drain W fin =20nm Ge Ge Si 0.3 Ge 0.7 Si 0.3 Ge nm 20 nm Fin Pitch=80nm W fin =20nm; Fin pitch = 80nm; Tri-layer high-κ realized on s-ge QW with SIT process 22

23 FinFET Fabrication : TEM Gate Metal 10nm Ge QW B-doping Si 0.3 Ge 0.7 Buffer 20nm 5E18 /cm 3 Phos Doping 500 nm Si 0.7 Ge 0.3 Buffer W fin =20nm Ge Si 0.3 Ge 0.7 Buffer Al 2 O 3 /GeO x HfO 2 Si Substrate 10nm Vertical fin sidewall profile achieved for W fin =20nm QW FinFET 23

24 I D [ A/ m] Long Channel FinFET Performance 10 3 w/ GeOx IL V DS =-0.05V -0.5V L G =5 m mV/dec W Fin Planar 20nm 96mV/dec Gate Voltage [V] I D [ A m] Planar FinFET (W Fin =20nm) V G -V T =-1V to 1V V G,Step =0.1V L G =5 m Drain Voltage [V] E-Mode (V T =-0.75V); I ON /I OFF ~10 4 ; SS=150mV/dec for W fin =20nm FinFET with Tri-layer high-κ obtained 24

25 V T,SAT [V] E-Mode QW FinFET Operation 0.4 Depletion Mode V DS =-0.5V Enhancement Mode V DS =-0.5V 100 L G =5 m 100 V DS =-0.5V Planar Planar Planar Fin Width [nm] Fin Width [nm] Fin Width [nm] SS [mv/dec] Peak Gm [ S/ m] W fin =20nm; L G =5μm; 10 fins/μm E-Mode operation for W fin =45nm and 20nm Degradation in SS (36%) and peak Gm (60%) with reducing W fin 25

26 Hole Mobility [cm 2 /Vs] Fin Mobility Planar W Fin =70nm W Fin =45nm W Fin =20nm Unstrained Ge Si Universal T=300K 2.6X 2X Hole Density [/cm 2 ] Peak Mobility [cm 2 /Vs] Planar Fin Width [nm] 2.6X higher μ Peak obtained with s-ge QW 26 FinFET (W fin =20nm) compared to unstrained-ge

27 FinFET Hole Transport Highlights Hole Mobility [cm 2 /Vs] Planar FinFET Hole Density [/cm 2 ] Reducing sidewall D IT and sidewall roughness key to achieving higher fin mobility 27

28 Transport Degradation Hole Mobility [cm 2 /Vs] Planar N S N -1 S N -1 S 77K 150K 300K FinFET (W Fin =20nm) N S N -1 S N -2 S Hole Density [/cm 2 ] Scattering Mechanism Acoustic Phonon Ns and T Dependence Ns -1/3 T Sidewall Roughness Ns -2 T 0 Remote Charge Scattering Ns 3/2 T 0 Strong Ns dependence for FinFET at 77K indicates sidewall roughness scattering 28

29 Transport Degradation Hole Mobility [cm 2 /Vs] Planar W Fin =70nm Scattering Mechanism Acoustic Phonon W Fin =45nm W Fin =20nm Ns=10 13 /cm 2 T -1 T Temperature [K] Ns and T Dependence Ns -1/3 T Sidewall Roughness Ns -2 T 0 Remote Charge Scattering Ns 3/2 T 0 Reduced temperature dependence of mobility for FinFET is indicative of sidewall roughness 29

30 Short Channel Ge QW FinFET Gate Fin Source Drain Al Gate 100nm L G 10nm s-ge QW GeO x /Al 2 O 3 HfO 2 100nm 20nm Si 0.3 Ge 0.7 Buffer Short channel FinFET with gate length of 100nm and Tri-layer high-κ fabricated using SIT 30

31 I D [ A/ m] Short Channel FinFET Performance V DS =-0.05V V DS =-0.5V 130 mv/dec Tri-Layer High-k/s-Ge QW FinFET Gate Voltage [V] I D [ A m] Tri-Layer High-k/s-Ge QW FinFET V G -V T =-1V to 1V Drain Voltage [V] W fin =20nm; L G =100nm; 10 fins/μm V G,Step =0.1V E-Mode L G =100nm QW FinFET (W fin =20nm) with with I ON =90μA/μm (V G -V T =-0.5V) and SS=130 mv/dec 31

32 G m [ S/ m] Transconductance Tri-Layer High-k/s-Ge QW FinFET W Fin =20nm V DS =-0.5V 1.6X L G =100nm L G =5 m Gate Voltage [V] R SD-Linear [ m] 7x10 4 6x10 4 5x10 4 4x10 4 3x10 4 2x10 4 1x FinFET W Fin =20nm L G =100nm R Ext = 6.4k - m V G -V T =0V V G -V T =-0.2V V G -V T =-0.8V Gate Length [ m] Peak G m enhancement of 1.6X observed for L g =100nm QW FinFET High R access =6.4kΩ-μm limits short channel performance 32

33 I D [ A/ m] Benchmarking [1] Intel 22nm pmos FinFET W Fin =20nm L G =100nm V DS =-0.5V V G -V T [V] 3D simulation model calibration to experiment performed using self-consistent Poisson- Schrodinger solver for QW FinFET [1] C. Auth et al., VLSI

34 I D [ A/ m] Performance Projection X [1] Intel 22nm pmos FinFET W Fin =20nm L G =100nm V DS =-0.5V V G -V T [V] Channel Position [nm] v inj estimated at 8x10 6 cm/s for s-ge QW short channel FinFET at L G =100nm v eff [x10 6 cm/s] 10 5 v inj =8x10 6 virtual source cm/s 3x10 6 cm/s Intel 22nm pmos FinFET R ext = 6.4 kω-μm -> 200 Ω-μm [1] C. Auth et al., VLSI 2012 V GS =V DS =-0.5V L G =100nm 34

35 Conclusion Asymmetric uniaxial strain along fin (1.8%) results in high hole mobility in s-ge QW FinFET In-situ H-plasma clean and Tri-layer High-k gate stack developed: Low leakage (10-2 A/cm 2 ), low D IT at ultrathin EOT (0.72nm) obtained Mobility of 770 cm 2 /Vs at 0.83nm EOT achieved with s-ge QW MOSFETs E-Mode 1.3% s-ge QW FinFET with W fin =20nm and μ Hole =700 cm 2 /Vs (2.6X over r-ge) achieved with Trilayer high-k s-ge QW FinFET shows 8x10 6 cm/s v inj (simulation) with lower R access 35

36 Acknowledgements TSMC o Exploratory Technology Development Kurt J. Lesker Co. Penn State Nanofab National Science Foundation THANK YOU 36

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Quantum-size effects in sub-10 nm fin width InGaAs finfets Quantum-size effects in sub-10 nm fin width InGaAs finfets Alon Vardi, Xin Zhao, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 9, 2015 Sponsors: DTRA NSF (E3S STC) Northrop

More information

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Alon Vardi, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

InGaAs Double-Gate Fin-Sidewall MOSFET

InGaAs Double-Gate Fin-Sidewall MOSFET InGaAs Double-Gate Fin-Sidewall MOSFET Alon Vardi, Xin Zhao and Jesús del Alamo Microsystems Technology Laboratories, MIT June 25, 214 Sponsors: Sematech, Technion-MIT Fellowship, and NSF E3S Center (#939514)

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate Hu Ai-Bin( 胡爱斌 ) and Xu Qiu-Xia( 徐秋霞 ) Institute of Microelectronics,

More information

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Ling Xia 1, Vadim Tokranov 2, Serge R. Oktyabrsky

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

The Prospects for III-Vs

The Prospects for III-Vs 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Ultimately Scaled CMOS: DG FinFETs?

Ultimately Scaled CMOS: DG FinFETs? Ultimately Scaled CMOS: DG FinFETs? Jerry G. Fossum SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130 J. G. Fossum / 1 Outline Introduction -

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology

Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology Robert Chau, Justin Brask, Suman Datta, Gilbert Dewey, Mark Doczy, Brian Doyle, Jack

More information

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

High aspect-ratio InGaAs FinFETs with sub-20 nm fin width

High aspect-ratio InGaAs FinFETs with sub-20 nm fin width High aspect-rati InGaAs FinFETs with sub-2 nm fin width Aln Vardi, Jianqiang Lin, Wenjie Lu, Xin Zha and Jesús A. del Alam Micrsystems Technlgy Labratries, MIT June 15, 216 Spnsrs: DTRA (HDTRA 1-14-1-57),

More information

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout B.Doyle, J.Kavalieros, T. Linton, R.Rios B.Boyanov, S.Datta, M. Doczy, S.Hareland, B. Jin, R.Chau Logic Technology Development Intel

More information

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 1 Analysis of Band-to-band Title of Talk Tunneling Structures Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 A Science & Technology Center Vertical Type-II TFET Structure

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Technology Development & Design for 22 nm InGaAs/InP-channel MOSFETs

Technology Development & Design for 22 nm InGaAs/InP-channel MOSFETs 2008 Indium Phosphide and Related Materials Conference, May, Versailles, France Technology Development & Design for 22 nm InGaAs/InP-channel MOSFETs M. Rodwell University of California, Santa Barbara M.

More information

Recent Development of FinFET Technology for CMOS Logic and Memory

Recent Development of FinFET Technology for CMOS Logic and Memory Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley Why FinFET Outline FinFET process Unique features of FinFET Mobility,

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Ultra-Scaled InAs HEMTs

Ultra-Scaled InAs HEMTs Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim 2,3, Jesús. A. del Alamo 2, and Mathieu Luisier 1 1 Network for Computational ti Nanotechnology and Birck

More information

Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors

Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors M. Adachi 1, K. Okamoto 1, K. Kakushima 2, P. Ahmet 1, K. Tsutsui 2, N.

More information

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs 42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4,

More information

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor Low Frequency Noise in MoS Negative Capacitance Field-effect Transistor Sami Alghamdi, Mengwei Si, Lingming Yang, and Peide D. Ye* School of Electrical and Computer Engineering Purdue University West Lafayette,

More information

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 MOSFET Transport Issues semiconductor band structure quantum confinement effects low-field mobility and high-field saturation Reading: - M. Lundstrom,

More information

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Shih-Ching Lo 1, Yiming Li 2,3, and Jyun-Hwei Tsai 1 1 National Center for High-Performance

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric 048 SCIENCE CHINA Information Sciences April 2010 Vol. 53 No. 4: 878 884 doi: 10.1007/s11432-010-0079-8 Frequency dispersion effect and parameters extraction method for novel HfO 2 as gate dielectric LIU

More information

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Center for High Performance Power Electronics Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Dr. Wu Lu (614-292-3462, lu.173@osu.edu) Dr. Siddharth Rajan

More information

Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS

Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS Modeling Overview Strain Effects Thermal Modeling TCAD Modeling Outline FLOOPS / FLOODS Introduction Progress on GaN Devices Prospects for Reliability

More information

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa Stretching the Barriers An analysis of MOSFET Scaling Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa Why Small? Higher Current Lower Gate Capacitance Higher

More information

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET Contemporary Engineering Sciences, Vol. 4, 2011, no. 6, 249 258 Analytical Modeling of Threshold Voltage for a Biaxial Strained-Si-MOSFET Amit Chaudhry Faculty of University Institute of Engineering and

More information

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Analysis of Ultra-Scaled InAs HEMTs Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche Birck Nanotechnology Center and Purdue University,

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors

Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors Felicia A. McGuire 1, Yuh-Chen Lin 1, Katherine Price 1, G. Bruce Rayner 2, Sourabh

More information

Advanced and Emerging Devices: SEMATECH s Perspective

Advanced and Emerging Devices: SEMATECH s Perspective SEMATECH Symposium October 23, 2012 Seoul Accelerating the next technology revolution Advanced and Emerging Devices: SEMATECH s Perspective Paul Kirsch Director, FEP Division Copyright 2012 SEMATECH, Inc.

More information

PHYSICS, FABRICATION AND CHARACTERIZATION OF III-V MULTI-GATE FETS FOR LOW POWER ELECTRONICS

PHYSICS, FABRICATION AND CHARACTERIZATION OF III-V MULTI-GATE FETS FOR LOW POWER ELECTRONICS The Pennsylvania State University The Graduate School College of Engineering PHYSICS, FABRICATION AND CHARACTERIZATION OF III-V MULTI-GATE FETS FOR LOW POWER ELECTRONICS A Dissertation in Electrical Engineering

More information

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC) Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs 1,2) D.-H. Kim, 1) J. A. del Alamo, 1) D. A. Antoniadis and 2) B. Brar 1) Microsystems Technology Laboratories, MIT 2) Teledyne

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.3, No.2, March 213 NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS Abderrazzak

More information

Emerging Applications for High K Materials in VLSI Technology

Emerging Applications for High K Materials in VLSI Technology Materials 2014, 7, 2913-2944; doi:10.3390/ma7042913 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Emerging Applications for High K Materials in VLSI Technology Robert D. Clark

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

Glasgow eprints Service

Glasgow eprints Service Palmer, M.J. and Braithwaite, G. and Prest, M.J. and Parker, E.H.C. and Whall, T.E. and Zhao, Y.P. and Kaya, S. and Watling, J.R. and Asenov, A. and Barker, J.R. and Waite, A.M. and Evans, A.G.R. (2001)

More information

Modeling Random Variability of 16nm Bulk FinFETs

Modeling Random Variability of 16nm Bulk FinFETs Modeling Random Variability of 16nm Bulk FinFETs Victor Moroz, Qiang Lu, and Munkang Choi September 9, 2010 1 Outline 2 Outline 3 16nm Bulk FinFETs for 16nm Node Simulation domain 24nm fin pitch 56nm gate

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance 1 Seminar Spacer Lithography for Reduced Variability in MOSFET Performance Prof. Tsu-Jae King Liu Electrical Engineering & Computer Sciences Dept. University of California at Berkeley Graduate Student:

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

EE 292L : Nanomanufacturing. Week 5: Advanced Process Technology. Oct

EE 292L : Nanomanufacturing. Week 5: Advanced Process Technology. Oct EE 292L : Nanomanufacturing Week 5: Advanced Process Technology Oct 22 2012 1 Advanced Process Technology 1 HAR etch 2 3 HAR Gapfill Metal ALD 4 Reflow 5 6 SAC Airgap 7 8 Strain Ge/III-V Engineering 1

More information

Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors

Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors Journal of the Korean Physical Society, Vol. 44, No. 1, January 2004, pp. 112 116 Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors Y. K. Park, Y. S. Ahn, S. B. Kim, K. H. Lee, C. H.

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Recent Progress in Understanding the DC and RF Reliability of GaN High Electron Mobility Transistors

Recent Progress in Understanding the DC and RF Reliability of GaN High Electron Mobility Transistors Recent Progress in Understanding the DC and RF Reliability of GaN High Electron Mobility Transistors J. A. del Alamo and J. Joh* Microsystems Technology Laboratories, MIT, Cambridge, MA *Presently with

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

Electric-Field Induced F - Migration in Self-Aligned InGaAs MOSFETs and Mitigation

Electric-Field Induced F - Migration in Self-Aligned InGaAs MOSFETs and Mitigation Electric-Field Induced F - Migration in Self-Aligned InGaAs MOSFETs and Mitigation X. Cai, J. Lin, D. A. Antoniadis and J. A. del Alamo Microsystems Technology Laboratories, MIT December 5, 2016 Sponsors:

More information

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002 6.720J/3.43J Integrated Microelectronic Devices Fall 2002 Lecture 30 1 Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor November 15, 2002 Contents: 1. Short channel effects Reading

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

MOSFET Physics: The Long Channel Approximation

MOSFET Physics: The Long Channel Approximation MOSFET Physics: The ong Channel Approximation A basic n-channel MOSFET (Figure 1) consists of two heavily-doped n-type regions, the Source and Drain, that comprise the main terminals of the device. The

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Effects of Rapid Thermal Annealing Temperature on Performances of Nanoscale FinFETs

Effects of Rapid Thermal Annealing Temperature on Performances of Nanoscale FinFETs 266 M. SENGUPTA et al : EFFECTS OF RAPID THERMAL ANNEALING TEMPERATURE ON PERFORMANCES OF Effects of Rapid Thermal Annealing Temperature on Performances of Nanoscale FinFETs M. Sengupta*, S. Chattopadhyay*,

More information

Fig The electron mobility for a-si and poly-si TFT.

Fig The electron mobility for a-si and poly-si TFT. Fig. 1-1-1 The electron mobility for a-si and poly-si TFT. Fig. 1-1-2 The aperture ratio for a-si and poly-si TFT. 33 Fig. 1-2-1 All kinds defect well. (a) is the Dirac well. (b) is the repulsive Columbic

More information

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield Xi Zhang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Department of Electronic Engineering, Chienkuo Technology University, No. 1, Chieh Shou N. Rd., Changhua City, 500 Taiwan, R.O.C.

Department of Electronic Engineering, Chienkuo Technology University, No. 1, Chieh Shou N. Rd., Changhua City, 500 Taiwan, R.O.C. Typeset using jjap.cls Compact Hot-Electron Induced Oxide Trapping Charge and Post- Stress Drain Current Modeling for Buried-Channel p-type Metal- Oxide-Semiconductor-Field-Effect-Transistors

More information

III-V field-effect transistors for low power digital logic applications

III-V field-effect transistors for low power digital logic applications Microelectronic Engineering 84 (2007) 2133 2137 www.elsevier.com/locate/mee III-V field-effect transistors for low power digital logic applications Suman Datta * Components Research, Technology Manufacturing

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

Strained Germanium Quantum Well PMOSFETs on SOI with Mobility Enhancement by External Uniaxial Stress

Strained Germanium Quantum Well PMOSFETs on SOI with Mobility Enhancement by External Uniaxial Stress Liu et al. Nanoscale Research Letters (2017) 12:120 DOI 10.1186/s11671-017-1913-3 NANO EXPRESS Strained Germanium Quantum Well PMOSFETs on SOI with Mobility Enhancement by External Uniaxial Stress Yan

More information

ALD high-k and higher-k integration on GaAs

ALD high-k and higher-k integration on GaAs ALD high-k and higher-k integration on GaAs Ozhan Koybasi 1), Min Xu 1), Yiqun Liu 2), Jun-Jieh Wang 2), Roy G. Gordon 2), and Peide D. Ye 1)* 1) School of Electrical and Computer Engineering, Purdue University,

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Preparation of the GaSb/Al.2 Ga.8 Sb/InAs source wafers used for the epitaxial transfer process The source layers were grown in a solid source VG-8 molecular beam epitaxy (MBE) reactor on n-type (Te-doped,

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications 30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications T.-W. Kim, D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

Extending the Era of Moore s Law

Extending the Era of Moore s Law 14 nm chip X SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark bohr 2014 idf presentation.pdf Extending the Era of Moore s Law Tsu Jae King Liu Department of Electrical Engineering

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) The Future of CMOS David Pulfrey 1 CHRONOLOGY of the FET 1933 Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild) 1991 The most abundant object made by mankind (C.T. Sah) 2003 The 10 nm FET

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

TOTAL IONIZING DOSE RADIATION EFFECTS AND NEGATIVE BIAS TEMPERATURE INSTABILITY ON SiGe pmos DEVICES

TOTAL IONIZING DOSE RADIATION EFFECTS AND NEGATIVE BIAS TEMPERATURE INSTABILITY ON SiGe pmos DEVICES TOTAL IONIZING DOSE RADIATION EFFECTS AND NEGATIVE BIAS TEMPERATURE INSTABILITY ON SiGe pmos DEVICES By Guoxing Duan Thesis Submitted to the Faculty of the Graduate school of Vanderbilt University in partial

More information

Technology Development for InGaAs/InP-channel MOSFETs

Technology Development for InGaAs/InP-channel MOSFETs MRS Spring Symposium, Tutorial: Advanced CMOS Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

Prospects for Ge MOSFETs

Prospects for Ge MOSFETs Prospects for Ge MOSFETs Sematech Workshop December 4, 2005 Dimitri A. Antoniadis Microsystems Technology Laboratories MIT Sematech Workshop 2005 1 Channel Transport - I D I D =WQ i (x 0 )v xo v xo : carrier

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information