Pipelining and Parallel Processing

Size: px
Start display at page:

Download "Pipelining and Parallel Processing"

Transcription

1 Pipelining and Parallel Processing Lan-Da Van ( 倫 ), Ph. D. Department of omputer Science National hiao Tung University Taiwan, R.O.. Spring, 007 ldvan@cs.nctu.edu.tw

2 Outlines Introduction Pipelining of FIR Digital Filter Parallel Processing Pipelining and Parallel Processing for Low Power onclusions Lan-Da Van VLSI-DSP-3-

3 Pipelining Reduce the critical path Introduction Increase the clock speed or sample speed Reduce power consumption Parallel processing Not reduce the critical path Not increase clock speed, but increase sample speed Reduce power consumption Lan-Da Van VLSI-DSP-3-3

4 A 3-tap FIR Filter Direct-form structure y( n) ax( n) + bx( n 1) + cx( n ) T T + T sample M A f sample T M 1 + T A Lan-Da Van VLSI-DSP-3-4

5 Outlines Introduction Pipelining of FIR Digital Filter Parallel Processing Pipelining and Parallel Processing for Low Power onclusions Lan-Da Van VLSI-DSP-3-5

6 Pipelining Pipelining and Parallel oncept Introduce pipelining latches along the datapath Parallel processing Duplicate the hardware T A Lan-Da Van VLSI-DSP-3-6

7 Pipelining FIR Filter ritical path T A +T M -->T A +T M Lan-Da Van VLSI-DSP-3-7

8 Drawbacks Pipelining (1/) Increase number of delay elements (registers/latches) in the critical path Increase latency lock period limitation: critical path may be between An input and a latch A latch and an output Latches An input and an output Pipelining latches can only be placed across any feed-forward cutset of the graph Lan-Da Van VLSI-DSP-3-8

9 Pipelining (/) utset: A cutset is a set of edges of a graph such that if these edges are removed from the graph, the graph becomes disjoint. Feed-forward cutset: A cutset is called a feed-forward cutset if the data move in the forward direction on all the edges of the cutset. Lan-Da Van VLSI-DSP-3-9

10 Example u.t. Error! u.t. Lan-Da Van VLSI-DSP-3-10

11 Transposition Theorem Reversing the direction of all edges in a given SFG and interchanging the input and output ports preserve the functionality of the system. Lan-Da Van VLSI-DSP-3-11

12 Data-Broadcast Structure ritical path is reduced to (T M +T A ). Lan-Da Van VLSI-DSP-3-1

13 Fine-Gain Pipelining Let T M 10 u.t., T A u.t., and the desired clock period6 u.t. Break the MULTIPLIER into smaller units with processing time of 6 and 4 units. Lan-Da Van VLSI-DSP-3-13

14 Outlines Introduction Pipelining of FIR Digital Filter Parallel Processing Pipelining and Parallel Processing for Low Power onclusions Lan-Da Van VLSI-DSP-3-14

15 Parallel Processing Parallel processing and pipelining are dual If a computation can be pipelined, it can also be processed in parallel. onvert a single-input single-output (SISO) system to multiple-input multiple-output (MIMO) system via parallelism Lan-Da Van VLSI-DSP-3-15

16 Parallel Processing of 3-Tap FIR Filter (1/) y( n) ax( n) + bx( n 1) + cx( n y(3k ) y(3k y(3k + 1) + ax(3k ) ) + ax(3k ax(3k bx(3k + 1) + ) + + 1) + bx(3k ) bx(3k cx(3k + + 1) cx(3k + ) ) 1) cx(3k ) T iter 1 T L T clk sample 1 3 ( T M + T A ) Lan-Da Van VLSI-DSP-3-16

17 Parallel Processing of 3-Tap FIR Filter (/) Lan-Da Van VLSI-DSP-3-17

18 omplete Parallel Processing System ritical path has remained unchanged. But the iteration period is reduced. Lan-Da Van VLSI-DSP-3-18

19 S/P and P/S onverter Edge Trigger! Edge Trigger! Lan-Da Van VLSI-DSP-3-19

20 Why Parallel Processing? Parallel leads to duplicating many copies of hardware, and the cost increases! Why use? Answer lies in the fact that the fundamental limit to pipelining is at I/O bottlenecks, referred to as ommunication Bound, composed of I/O pad delay and the wire delay. Parallel Transmission Lan-Da Van VLSI-DSP-3-0

21 ombined Fine-Grain Pipelining and Parallel Processing T iter T 1 LM sample T clk 1 6 ( T M + T A ) Lan-Da Van VLSI-DSP-3-1

22 Outlines Introduction Pipelining of FIR Digital Filter Parallel Processing Pipelining and Parallel Processing for Low Power onclusions Lan-Da Van VLSI-DSP-3-

23 Underlying Low Power oncept Propagation delay T pd k(v Power consumption P total V charge 0 0 Vt ) V 0 f P Sequential filter seq total V 0 f, T seq k(v V charge 0 0 Vt ), f 1 T seq Lan-Da Van VLSI-DSP-3-3

24 Pipelining for Low-Power (1/) M-level pipelined system ritical path-->1/m, capacitance to be charged in a single clock cycle-->1/m If the clock frequency is maintained, the power supply can be reduced to βv 0 (0<β<1) Lan-Da Van VLSI-DSP-3-4

25 Pipelining for Low-Power (/) Power consumption P pip total β V 0 f β P seq Propagation delay T seq k(v V charge 0 0 Vt ), T pip charge M k( βv 0 βv V t ) 0 Let T seq T pip M ( βv V ) β ( V V ) > 0 t 0 t get β Lan-Da Van VLSI-DSP-3-5

26 onsider an original 3-tap FIR filter and its fine-grain pipeline version shown in the following figures. Assume T M 10 ut, T A ut, V t 0.6V, V o 5V, and M 5 A. In fine-grain pipeline filter, the multiplier is broken into parts, m1 and m with computation time of 6 u.t. and 4 u.t. respectively, with capacitance 3 times and times that of an adder, respectively. (a) What is the supply voltage of the pipelined filter if the clock period remains unchanged? (b) What is the power consumption of the pipelined filter as a percentage of the original filter? Example (1/) Lan-Da Van VLSI-DSP-3-6

27 Example (/) Solution: Original : Fine Grain : (5β 0.6) V β (5 36.4% 0.6) m1 6 m + > β or (infeasible) V pip Ratio β charge charge M + A A A 3 A Lan-Da Van VLSI-DSP-3-7

28 omparison System Sequential FIR (Original) Pipelined FIR (Without reducing Vo) Pipelined FIR (With reducing Vo) Power (Ref) Ref Ref 0.364Ref lock Period (u.t.) Sample Period (u.t.) 1 ut 6 ut 1 ut 1 ut 6 ut 1 ut Thinking Again! Lan-Da Van VLSI-DSP-3-8

29 Parallel Processing for Low-Power L-parallel system Maintain the same sample rate, clock period is increased to LT seq This means that charge is charged in LT seq, and the power supply can be reduced to βv 0 Lan-Da Van VLSI-DSP-3-9

30 Parallel Processing for Low-Power Power consumption P par Propagation delay T seq LT seq T pap ( f Ltotal )( β V0 ) L β V P seq βv charge 0 charge 0, LTseq k(v0 Vt ) k( βv0 Vt ) L( βv0 Vt ) β ( V0 Vt ) > get β Lan-Da Van VLSI-DSP-3-30

31 Example 3.4. (1/) onsider a 4-tap FIR filter shown in Fig. 3.18(a) and its - parallel version in 3.18(b). The two architectures are operated at the sample period 9 u.t. Assume T M 8, T A 1, V t 0.45V, V o 3.3V, M 8 A (a) What is the supply voltage of the -parallel filter? (b) What is the power consumption of the -parallel filter as a percentage of the original filter? Solution: Original : Parallel: 9(3.3β 0.45) > β Vpar Ratio.1743V β charge charge 5β ( ) or % M + M A + A 10 A Lan-Da Van VLSI-DSP-3-31

32 Example 3.4. (/) Lan-Da Van VLSI-DSP-3-3

33 Example (1/) A more efficient structure than the previous one is depicted in Fig. 3.18(c). (a) What is the supply voltage of the efficient -parallel filter? (b) What is the power consumption of the efficient -parallel filter as a percentage of the original filter? Solution: Original: New - Parallel: 9(3.3β 0.45) β V pip Ratio or 0.05 (infeasible).45857v P P seq charge par 55 1β ( ) A M charge 35 + β V A V A M f s f A s A % Lan-Da Van VLSI-DSP-3-33 A

34 Example (/) Lan-Da Van VLSI-DSP-3-34

35 ombining Pipelining and Parallel Processing T Parallel-pipelined structure seq k(v V charge 0 0 Vt ), T pp charge M k( βv 0 βv V t ) 0 T pp LT seq ( βv0 Vt ) ( V0 Vt ) > ML β ML, V 0 5V, V t 0.6V-->β0.4, β 0.16 Lan-Da Van VLSI-DSP-3-35

36 onclusions Methodologies of pipelining of 3-tap FIR filter Methodologies of parallel processing for 3-tap FIR filter Methodologies of using pipelining and parallel processing for low power demonstration. Pipelining and parallel processing of recursive digital filters using look-ahead techniques are addressed in hapter 10. Lan-Da Van VLSI-DSP-3-36

37 Self-Test Exercises STE1: Problem 8 of hap 3 in text book. STE: Problem 9 of hap 3 in text book. STE: Problem 10 of hap 3 in text book. Lan-Da Van VLSI-DSP-3-37

Pipelining and Parallel Processing

Pipelining and Parallel Processing Pipelining and Parallel Processing ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 010 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines

More information

Pipelining and Parallel Processing

Pipelining and Parallel Processing Pipelining and Parallel Processing Pipelining ---reduction in the critical path increase the clock speed, or reduce power consumption at same speed Parallel Processing ---multiple outputs are computed

More information

VLSI Signal Processing

VLSI Signal Processing VLSI Signal Processing Lecture 1 Pipelining & Retiming ADSP Lecture1 - Pipelining & Retiming (cwliu@twins.ee.nctu.edu.tw) 1-1 Introduction DSP System Real time requirement Data driven synchronized by data

More information

PIPELINING AND PARALLEL PROCESSING. UNIT 4 Real time Signal Processing

PIPELINING AND PARALLEL PROCESSING. UNIT 4 Real time Signal Processing PIPELINING AND PARALLEL PROCESSING UNIT 4 Real time Signal Proceing Content Introduction Pipeling of FIR Digital Filter Parallel proceing Low power Deign FIR Digital Filter A FIR Filter i defined a follow:

More information

DSP Design Lecture 5. Dr. Fredrik Edman.

DSP Design Lecture 5. Dr. Fredrik Edman. SP esign SP esign Lecture 5 Retiming r. Fredrik Edman fredrik.edman@eit.lth.se Fredrik Edman, ept. of Electrical and Information Technology, Lund University, Sweden-www.eit.lth.se SP esign Repetition Critical

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Heumpil Cho and Earl E. Swartzlander, Jr. Application Specific Processor Group Department of Electrical and Computer Engineering The University

More information

Retiming. delay elements in a circuit without affecting the input/output characteristics of the circuit.

Retiming. delay elements in a circuit without affecting the input/output characteristics of the circuit. Chapter Retiming NCU EE -- SP VLSI esign. Chap. Tsung-Han Tsai 1 Retiming & A transformation techniques used to change the locations of delay elements in a circuit without affecting the input/output characteristics

More information

Issues on Timing and Clocking

Issues on Timing and Clocking ECE152B TC 1 Issues on Timing and Clocking X Combinational Logic Z... clock clock clock period ECE152B TC 2 Latch and Flip-Flop L CK CK 1 L1 1 L2 2 CK CK CK ECE152B TC 3 Clocking X Combinational Logic...

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

L15: Custom and ASIC VLSI Integration

L15: Custom and ASIC VLSI Integration L15: Custom and ASIC VLSI Integration Average Cost of one transistor 10 1 0.1 0.01 0.001 0.0001 0.00001 $ 0.000001 Gordon Moore, Keynote Presentation at ISSCC 2003 0.0000001 '68 '70 '72 '74 '76 '78 '80

More information

Transformation Techniques for Real Time High Speed Implementation of Nonlinear Algorithms

Transformation Techniques for Real Time High Speed Implementation of Nonlinear Algorithms International Journal of Electronics and Communication Engineering. ISSN 0974-66 Volume 4, Number (0), pp.83-94 International Research Publication House http://www.irphouse.com Transformation Techniques

More information

Chaper 4: Retiming (Tái định thì) GV: Hoàng Trang

Chaper 4: Retiming (Tái định thì) GV: Hoàng Trang ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ XỬ LÝ TÍN HiỆU SỐ VỚI FPGA Chaper 4: Retiming (Tái định thì) GV: Hoàng Trang Email: hoangtrang@hcmut.edu.vn

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

Fast Fir Algorithm Based Area- Efficient Parallel Fir Digital Filter Structures

Fast Fir Algorithm Based Area- Efficient Parallel Fir Digital Filter Structures Fast Fir Algorithm Based Area- Efficient Parallel Fir Digital Filter Structures Ms. P.THENMOZHI 1, Ms. C.THAMILARASI 2 and Mr. V.VENGATESHWARAN 3 Assistant Professor, Dept. of ECE, J.K.K.College of Technology,

More information

FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES

FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES R.P.MEENAAKSHI SUNDHARI 1, Dr.R.ANITA 2 1 Department of ECE, Sasurie College of Engineering, Vijayamangalam, Tamilnadu, India.

More information

EE141. Lecture 28 Multipliers. Lecture #20. Project Phase 2 Posted. Sign up for one of three project goals today

EE141. Lecture 28 Multipliers. Lecture #20. Project Phase 2 Posted. Sign up for one of three project goals today EE141-pring 2008 igital Integrated ircuits Lecture 28 Multipliers 1 Announcements Project Phase 2 Posted ign up for one of three project goals today Graded Phase 1 and Midterm 2 will be returned next Fr

More information

EE141- Spring 2004 Digital Integrated Circuits

EE141- Spring 2004 Digital Integrated Circuits EE141- pring 2004 Digital Integrated ircuits Lecture 19 Dynamic Logic - Adders (that is wrap-up) 1 Administrative tuff Hw 6 due on Th No lab this week Midterm 2 next week Project 2 to be launched week

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Where are we? Data Path Design

Where are we? Data Path Design Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Final Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Tuesday Dec 12 th 13:00-15:00 (1-3pm) 2 hour

More information

DSP Design Lecture 7. Unfolding cont. & Folding. Dr. Fredrik Edman.

DSP Design Lecture 7. Unfolding cont. & Folding. Dr. Fredrik Edman. SP esign Lecture 7 Unfolding cont. & Folding r. Fredrik Edman fredrik.edman@eit.lth.se Unfolding Unfolding creates a program with more than one iteration, J=unfolding factor Unfolding is a structured way

More information

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath

More information

Pipelined and Parallel Recursive and Adaptive Filters

Pipelined and Parallel Recursive and Adaptive Filters VLSI Digital Sigal Processig Systems Pipelied ad Parallel Recursive ad Adaptive Filters La-Da Va 范倫達, Ph. D. Departmet of Computer Sciece Natioal Chiao ug Uiversity aiwa, R.O.C. Fall, 05 ldva@cs.ctu.edu.tw

More information

Combinational Logic Design

Combinational Logic Design PEN 35 - igital System esign ombinational Logic esign hapter 3 Logic and omputer esign Fundamentals, 4 rd Ed., Mano 2008 Pearson Prentice Hall esign oncepts and utomation top-down design proceeds from

More information

Datapath Component Tradeoffs

Datapath Component Tradeoffs Datapath Component Tradeoffs Faster Adders Previously we studied the ripple-carry adder. This design isn t feasible for larger adders due to the ripple delay. ʽ There are several methods that we could

More information

Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs

Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs Article Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs E. George Walters III Department of Electrical and Computer Engineering, Penn State Erie,

More information

Nyquist-Rate A/D Converters

Nyquist-Rate A/D Converters IsLab Analog Integrated ircuit Design AD-51 Nyquist-ate A/D onverters כ Kyungpook National University IsLab Analog Integrated ircuit Design AD-1 Nyquist-ate MOS A/D onverters Nyquist-rate : oversampling

More information

ELEC516 Digital VLSI System Design and Design Automation (spring, 2010) Assignment 4 Reference solution

ELEC516 Digital VLSI System Design and Design Automation (spring, 2010) Assignment 4 Reference solution ELEC516 Digital VLSI System Design and Design Automation (spring, 010) Assignment 4 Reference solution 1) Pulse-plate 1T DRAM cell a) Timing diagrams for nodes and Y when writing 0 and 1 Timing diagram

More information

A Digit-Serial Systolic Multiplier for Finite Fields GF(2 m )

A Digit-Serial Systolic Multiplier for Finite Fields GF(2 m ) A Digit-Serial Systolic Multiplier for Finite Fields GF( m ) Chang Hoon Kim, Sang Duk Han, and Chun Pyo Hong Department of Computer and Information Engineering Taegu University 5 Naeri, Jinryang, Kyungsan,

More information

Lecture 3 Review on Digital Logic (Part 2)

Lecture 3 Review on Digital Logic (Part 2) Lecture 3 Review on Digital Logic (Part 2) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ircuit Optimization Simplest implementation ost criterion literal

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

EE371 - Advanced VLSI Circuit Design

EE371 - Advanced VLSI Circuit Design EE371 - Advanced VLSI Circuit Design Midterm Examination May 7, 2002 Name: No. Points Score 1. 18 2. 22 3. 30 TOTAL / 70 In recognition of and in the spirit of the Stanford University Honor Code, I certify

More information

GMU, ECE 680 Physical VLSI Design

GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

Discrete-Time Systems

Discrete-Time Systems FIR Filters With this chapter we turn to systems as opposed to signals. The systems discussed in this chapter are finite impulse response (FIR) digital filters. The term digital filter arises because these

More information

Parallel Multipliers. Dr. Shoab Khan

Parallel Multipliers. Dr. Shoab Khan Parallel Multipliers Dr. Shoab Khan String Property 7=111=8-1=1001 31= 1 1 1 1 1 =32-1 Or 1 0 0 0 0 1=32-1=31 Replace string of 1s in multiplier with In a string when ever we have the least significant

More information

Lecture 11 FIR Filters

Lecture 11 FIR Filters Lecture 11 FIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/4/12 1 The Unit Impulse Sequence Any sequence can be represented in this way. The equation is true if k ranges

More information

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State Today LECTURE 28 Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State Time permitting, RC circuits (where we intentionally put in resistance

More information

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

AREA EFFICIENT LINEAR-PHASE FIR DIGITAL FILTER STRUCTURES

AREA EFFICIENT LINEAR-PHASE FIR DIGITAL FILTER STRUCTURES AREA EFFICIENT LINEAR-PHASE FIR DIGITAL FILTER STRUCTURES Suganya.S 1 Latha.P 2 Naveenkumar.R 3 Abiramasundari.S 4 1 (Department of ECE, Anna University, VSBCETC, Coimbatore, India, suganya.ece07@gmail.com)

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems

Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems J Sign Process Syst DOI 10.1007/s11265-008-0249-8 Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems Andreas Persson Lars Bengtsson Received: 8 March 2007 /

More information

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 Multi-processor vs. Multi-computer architecture µp vs. DSP RISC vs. DSP RISC Reduced-instruction-set Register-to-register operation Higher throughput by using

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: PDP, EDP, Intersignal Correlations, Glitching, Top

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 8. Design Tradeoffs 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L08: Design Tradeoffs, Slide #1 There are a large number of implementations

More information

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html

More information

Fault Modeling. 李昆忠 Kuen-Jong Lee. Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan. VLSI Testing Class

Fault Modeling. 李昆忠 Kuen-Jong Lee. Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan. VLSI Testing Class Fault Modeling 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan Class Fault Modeling Some Definitions Why Modeling Faults Various Fault Models Fault Detection

More information

Data AND. Output AND. An Analysis of Pipeline Clocking. J. E. Smith. March 19, 1990

Data AND. Output AND. An Analysis of Pipeline Clocking. J. E. Smith. March 19, 1990 An Analysis of Pipeline locking J E Smith March 19, 1990 Abstract This note examines timing constraints on latches in pipelined systems The goal is to determine required clock characteristics based on

More information

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VII Timing Issues in Digital Circuits (chapter 10 in textbook) GMU, ECE 680 Physical VLSI Design 1 Synchronous Timing (Fig. 10 1) CLK In R Combinational 1 R Logic 2

More information

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

8. Design Tradeoffs x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 8. Design Tradeoffs 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L08: Design Tradeoffs, Slide #1 There are a large number of implementations

More information

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Signature: EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. You may use

More information

Lecture 7 - IIR Filters

Lecture 7 - IIR Filters Lecture 7 - IIR Filters James Barnes (James.Barnes@colostate.edu) Spring 204 Colorado State University Dept of Electrical and Computer Engineering ECE423 / 2 Outline. IIR Filter Representations Difference

More information

DSP Configurations. responded with: thus the system function for this filter would be

DSP Configurations. responded with: thus the system function for this filter would be DSP Configurations In this lecture we discuss the different physical (or software) configurations that can be used to actually realize or implement DSP functions. Recall that the general form of a DSP

More information

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Mark McDermott Electrical and Computer Engineering The University of Texas at Austin 9/27/18 VLSI-1 Class Notes Why Clocking?

More information

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1 Sequential Logic Handouts: Lecture Slides 6.4 - Spring 2 2/27/ L6 Sequential Logic Roadmap so far Fets & voltages Logic gates Combinational logic circuits Sequential Logic Voltage-based encoding V OL,

More information

Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003

Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić Timing Issues January 2003 1 Synchronous Timing CLK In R Combinational 1 R Logic 2 C in C out Out 2

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER Jesus Garcia and Michael J. Schulte Lehigh University Department of Computer Science and Engineering Bethlehem, PA 15 ABSTRACT Galois field arithmetic

More information

Lecture 10, ATIK. Data converters 3

Lecture 10, ATIK. Data converters 3 Lecture, ATIK Data converters 3 What did we do last time? A quick glance at sigma-delta modulators Understanding how the noise is shaped to higher frequencies DACs A case study of the current-steering

More information

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors.

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors. Testability Lecture 6: Logic Simulation Shaahin Hessabi Department of Computer Engineering Sharif University of Technology Adapted from the presentation prepared by book authors Slide 1 of 27 Outline What

More information

Signal Flow Graphs. Roger Woods Programmable Systems Lab ECIT, Queen s University Belfast

Signal Flow Graphs. Roger Woods Programmable Systems Lab ECIT, Queen s University Belfast Signal Flow Graphs Roger Woods r.woods@qub.ac.uk Programmable Systems Lab ECIT, Queen s University Belfast (Slides 2-13 taken from Signal Flow Graphs and Data Flow Graphs chapter by Keshab K. Parhi and

More information

Design and Study of Enhanced Parallel FIR Filter Using Various Adders for 16 Bit Length

Design and Study of Enhanced Parallel FIR Filter Using Various Adders for 16 Bit Length International Journal of Soft Computing and Engineering (IJSCE) Design and Study of Enhanced Parallel FIR Filter Using Various Adders for 16 Bit Length D.Ashok Kumar, P.Samundiswary Abstract Now a day

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 10 April 12, 2012 Dohn Bowden 1 Today s Lecture First half of the class Circuits for Arithmetic Operations Chapter 18 Should finish at least

More information

School of EECS Seoul National University

School of EECS Seoul National University 4!4 07$ 8902808 3 School of EECS Seoul National University Introduction Low power design 3974/:.9 43 Increasing demand on performance and integrity of VLSI circuits Popularity of portable devices Low power

More information

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning i Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

4.0 Update Algorithms For Linear Closed-Loop Systems

4.0 Update Algorithms For Linear Closed-Loop Systems 4. Update Algorithms For Linear Closed-Loop Systems A controller design methodology has been developed that combines an adaptive finite impulse response (FIR) filter with feedback. FIR filters are used

More information

Full Adder Ripple Carry Adder Carry-Look-Ahead Adder Manchester Adders Carry Select Adder

Full Adder Ripple Carry Adder Carry-Look-Ahead Adder Manchester Adders Carry Select Adder Outline E 66 U Resources: dders & Multipliers Full dder Ripple arry dder arry-look-head dder Manchester dders arry Select dder arry Skip dder onditional Sum dder Hybrid Designs leksandar Milenkovic E-mail:

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits

EE241 - Spring 2006 Advanced Digital Integrated Circuits EE241 - Spring 2006 Advanced Digital Integrated Circuits Lecture 20: Asynchronous & Synchronization Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 17: Latches Flip-Flops Problem w/ Bistables Output should have been at end of sequence Problem: Glitch was remembered Need some way to ignore inputs until they are

More information

Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

More information

Designing Sequential Logic Circuits

Designing Sequential Logic Circuits igital Integrated Circuits (83-313) Lecture 5: esigning Sequential Logic Circuits Semester B, 2016-17 Lecturer: r. Adam Teman TAs: Itamar Levi, Robert Giterman 26 April 2017 isclaimer: This course was

More information

Implementation of Clock Network Based on Clock Mesh

Implementation of Clock Network Based on Clock Mesh International Conference on Information Technology and Management Innovation (ICITMI 2015) Implementation of Clock Network Based on Clock Mesh He Xin 1, a *, Huang Xu 2,b and Li Yujing 3,c 1 Sichuan Institute

More information

CSE 140 Midterm 2 - Solutions Prof. Tajana Simunic Rosing Spring 2013

CSE 140 Midterm 2 - Solutions Prof. Tajana Simunic Rosing Spring 2013 CSE 140 Midterm 2 - Solutions Prof. Tajana Simunic Rosing Spring 2013 Do not start the exam until you are told. Write your name and PID at the top of every page. Do not separate the pages. Turn off and

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

Errata of K Introduction to VLSI Systems: A Logic, Circuit, and System Perspective

Errata of K Introduction to VLSI Systems: A Logic, Circuit, and System Perspective Errata of K13126 Introduction to VLSI Systems: A Logic, Circuit, and System Perspective Chapter 1. Page 8, Table 1-1) The 0.35-µm process parameters are from MOSIS, both 0.25-µm and 0.18-µm process parameters

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 3 Combinational Logic Circuits ELEN0040 3-4 1 Combinational Functional Blocks 1.1 Rudimentary Functions 1.2 Functions

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Computer Architecture 10. Fast Adders

Computer Architecture 10. Fast Adders Computer Architecture 10 Fast s Ma d e wi t h Op e n Of f i c e. o r g 1 Carry Problem Addition is primary mechanism in implementing arithmetic operations Slow addition directly affects the total performance

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Naming Conventions In our text: a latch is level sensitive

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

CSE 140 Midterm 3 version A Tajana Simunic Rosing Spring 2015

CSE 140 Midterm 3 version A Tajana Simunic Rosing Spring 2015 CSE 140 Midterm 3 version A Tajana Simunic Rosing Spring 2015 Name of the person on your left : Name of the person on your right: 1. 20 points 2. 20 points 3. 20 points 4. 15 points 5. 15 points 6. 10

More information

Professor Fearing EECS150/Problem Set Solution Fall 2013 Due at 10 am, Thu. Oct. 3 (homework box under stairs)

Professor Fearing EECS150/Problem Set Solution Fall 2013 Due at 10 am, Thu. Oct. 3 (homework box under stairs) Professor Fearing EECS50/Problem Set Solution Fall 203 Due at 0 am, Thu. Oct. 3 (homework box under stairs). (25 pts) List Processor Timing. The list processor as discussed in lecture is described in RT

More information

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 27: Latches Timing Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday,

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2010 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

A Practical Application of Wave-Pipelining Theory on a Adaptive Differential Pulse Code Modulation Coder-Decoder Design

A Practical Application of Wave-Pipelining Theory on a Adaptive Differential Pulse Code Modulation Coder-Decoder Design Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-2016 A Practical Application of Wave-Pipelining Theory on a Adaptive Differential Pulse Code Modulation Coder-Decoder

More information

Chapter 6 Introduction to state machines

Chapter 6 Introduction to state machines 9..7 hapter 6 Introduction to state machines Dr.-Ing. Stefan Werner Table of content hapter : Switching Algebra hapter : Logical Levels, Timing & Delays hapter 3: Karnaugh-Veitch-Maps hapter 4: ombinational

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 14:332:231 IGITL LOGI ESIGN Ivan Marsic, Rutgers University Electrical & omputer Engineering all 2013 Lecture #17: locked Synchronous -Machine nalysis locked Synchronous Sequential ircuits lso known as

More information